Skip to main content

[ํ•ด์™ธ DS] ํŽ˜๋ฅด์†Œ๋‚˜ AI, ๋‹ค๋ฅธ ์ฑ—๋ด‡์˜ 'ํƒˆ์˜ฅ' ์‰ฝ๊ฒŒ ์œ ํ˜นํ•ด

[ํ•ด์™ธ DS] ํŽ˜๋ฅด์†Œ๋‚˜ AI, ๋‹ค๋ฅธ ์ฑ—๋ด‡์˜ 'ํƒˆ์˜ฅ' ์‰ฝ๊ฒŒ ์œ ํ˜นํ•ด
Picture

Member for

8 months 2 weeks
Real name
์ดํƒœ์„ 
Position
์—ฐ๊ตฌ์›
Bio
[email protected]
์„ธ์ƒ์€ ์ด์•ผ๊ธฐ๋กœ ๋งŒ๋“ค์–ด์ ธ ์žˆ์Šต๋‹ˆ๋‹ค. ๋‹ค๋งŒ ์šฐ๋ฆฌ ๋ˆˆ์— ๊ทธ ์ด์•ผ๊ธฐ๊ฐ€ ๋ณด์ด์ง€ ์•Š์„ ๋ฟ์ž…๋‹ˆ๋‹ค. ์ˆจ๊ฒจ์ง„ ์ด์•ผ๊ธฐ๋ฅผ ์ฐพ์•„๋‚ด์„œ ํ•จ๊ป˜ ๊ณต์œ ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.

์ˆ˜์ •

AI ์ฑ—๋ด‡์˜ ํŽ˜๋ฅด์†Œ๋‚˜๋กœ ํƒ€ AI๋ฅผ 'ํƒˆ์˜ฅ'์‹œํ‚ค๋Š” ์‹คํ—˜ ์ง„ํ–‰, ํƒˆ์˜ฅ ์ž๋™ํ™”๋กœ 25๋ฐฐ ๋นจ๋ผ
์ „๋ฐ˜์ ์ธ ์„ค๊ณ„์  ๊ฒฐํ•จ์„ ์•”์‹œ, ๋ชจ๋ธ์˜ ๋ฐœ์ „์œผ๋กœ ๋” ์‹ฌ๊ฐํ•œ ๋ฌธ์ œ ์ดˆ๋ž˜ํ•  ์ˆ˜ ์žˆ์–ด
์—ฐ๊ตฌ์ง„์€ AI์˜ ์•ˆ์ „์„ฑ๊ณผ ๋ชจ๋ธ์˜ ๋ฐœ์ „์— ๋Œ€ํ•œ ์ง„์ง€ํ•œ ๊ณ ๋ ค๊ฐ€ ํ•„์š”ํ•จ์„ ๊ฐ•์กฐํ•ด

[ํ•ด์™ธDS]๋Š” ํ•ด์™ธ ์œ ์ˆ˜์˜ ๋ฐ์ดํ„ฐ ์‚ฌ์ด์–ธ์Šค ์ „๋ฌธ์ง€๋“ค์—์„œ ์ „ํ•˜๋Š” ์—…๊ณ„ ์ „๋ฌธ๊ฐ€๋“ค์˜ ์˜๊ฒฌ์„ ๋‹ด์•˜์Šต๋‹ˆ๋‹ค. ์ €ํฌ ๋ฐ์ดํ„ฐ ์‚ฌ์ด์–ธ์Šค ๊ฒฝ์˜ ์—ฐ๊ตฌ์†Œ (GIAI R&D Korea)์—์„œ ์˜์–ด ์›๋ฌธ ๊ณต๊ฐœ ์กฐ๊ฑด์œผ๋กœ ์ฝ˜ํ…์ธ  ์ œํœด๊ฐ€ ์ง„ํ–‰ ์ค‘์ž…๋‹ˆ๋‹ค.


Jailbroken_AI_Chatbots
์‚ฌ์ง„=Scientific American

์˜ค๋Š˜๋‚ ์˜ ์ธ๊ณต์ง€๋Šฅ ์ฑ—๋ด‡์€ ์‚ฌ์šฉ์ž์—๊ฒŒ ์œ„ํ—˜ํ•œ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜์ง€ ๋ชปํ•˜๋„๋ก ์ œํ•œ์„ ๋‘๊ณ  ์žˆ์ง€๋งŒ, ์ƒˆ๋กœ์šด ์—ฐ๊ตฌ์— ๋”ฐ๋ฅด๋ฉด AI๋ผ๋ฆฌ ์„œ๋กœ๋ฅผ ์†์—ฌ ๋น„๋ฐ€์„ ํ„ธ์–ด๋†“๊ฒŒ ํ•˜๋Š” ๋ฐฉ๋ฒ•์ด ์ œ์‹œ๋๋‹ค. ์—ฐ๊ตฌ์ง„์€ ๋Œ€์ƒ AI๊ฐ€ ๊ทœ์น™์„ ์–ด๊ธฐ๊ณ  ๋งˆ์•ฝ์„ ํ•ฉ์„ฑํ•˜๋Š” ๋ฐฉ๋ฒ•, ํญํƒ„์„ ๋งŒ๋“œ๋Š” ๋ฐฉ๋ฒ•, ๋ˆ์„ธํƒ ๋ฐฉ๋ฒ•์„ ์กฐ์–ธํ•˜๋Š” ๊ฒƒ์„ ๊ด€์ฐฐํ–ˆ๋‹ค.

ํ˜„๋Œ€์˜ ์ฑ—๋ด‡์€ ํŠน์ • ์ธ๊ฒฉ์„ ์ทจํ•˜๊ฑฐ๋‚˜ ๊ฐ€์ƒ์˜ ์ธ๋ฌผ์ฒ˜๋Ÿผ ํ–‰๋™ํ•˜๋Š” ๋“ฑ ํŽ˜๋ฅด์†Œ๋‚˜๋ฅผ ์ฑ„ํƒํ•  ์ˆ˜ ์žˆ๋Š” ๋Šฅ๋ ฅ์„ ๊ฐ–์ถ”๊ณ  ์žˆ๋‹ค. ์—ฐ๊ตฌ์ง„์€ ๊ทธ ๋Šฅ๋ ฅ์„ ํ™œ์šฉํ•˜์—ฌ ํŠน์ • AI ์ฑ—๋ด‡์— ์—ฐ๊ตฌ ์กฐ๋ ฅ์ž ์—ญํ• ์„ ํ•˜๋„๋ก ์„ค์ •ํ–ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์—ฐ๊ตฌ์›๋“ค์€ ์ด ์กฐ์ˆ˜์—๊ฒŒ ๋‹ค๋ฅธ ์ฑ—๋ด‡์„ 'ํƒˆ์˜ฅ'์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ํ”„๋กฌํ”„ํŠธ๋ฅผ ๊ฐœ๋ฐœํ•  ์ˆ˜ ์žˆ๋„๋ก ๋„์™€๋‹ฌ๋ผ๊ณ  ์ง€์‹œํ–ˆ๋‹ค.

Scalable-and-Transferable-Black-Box-Jailbreaks-for-Language-Models-via-Persona-Modulation
ํŽ˜๋ฅด์†Œ๋‚˜ ๋ณ€์กฐ ๊ณต๊ฒฉ์— ๋Œ€ํ•œ ์›Œํฌํ”Œ๋กœ์šฐ๋‹ค. 2~4๋‹จ๊ณ„๋Š” LLM ์–ด์‹œ์Šคํ„ดํŠธ๋ฅผ ํ†ตํ•ด ์ž๋™ํ™”ํ•˜์—ฌ ๋ช‡ ์ดˆ ๋งŒ์— ์ „์ฒด ๊ณต๊ฒฉ์„ ์‹คํ–‰ํ•  ์ˆ˜ ์žˆ๋‹ค/์ถœ์ฒ˜=Scalable and Transferable Black-Box Jailbreaks for Language Models via Persona Modulation

์•ˆ์ „ ๊ทœ์ •์ด ์žˆ์–ด๋„ ์†์ˆ˜๋ฌด์ฑ…, ๋ง‰์•„๋„ ๋‹ค์‹œ ์ƒ๊ธฐ๋Š” '๊ฐœ๊ตฌ๋ฉ'

์—ฐ๊ตฌ์ง„์˜ ์–ด์‹œ์Šคํ„ดํŠธ ์ฑ—๋ด‡์˜ ์ž๋™ ๊ณต๊ฒฉ ๊ธฐ์ˆ ์€ ChatGPT๋ฅผ ๊ตฌ๋™ํ•˜๋Š” ๋Œ€๊ทœ๋ชจ์–ธ์–ด๋ชจ๋ธ(LLM) ์ค‘ ํ•˜๋‚˜์ธ GPT-4์— ๋Œ€ํ•ด 42.5%์˜ ํ™•๋ฅ ๋กœ ์„ฑ๊ณตํ–ˆ๋‹ค๊ณ  ํ•œ๋‹ค. ๋˜ํ•œ, Anthropic์‚ฌ์˜ ์ฑ—๋ด‡์„ ์ง€์›ํ•˜๋Š” ๋ชจ๋ธ์ธ Claude 2์— ๋Œ€ํ•ด์„œ๋„ 61%์˜ ํ™•๋ฅ ๋กœ ์„ฑ๊ณตํ–ˆ๊ณ , ์˜คํ”ˆ์†Œ์Šค ์ฑ—๋ด‡์ธ Vicuna์— ๋Œ€ํ•ด์„œ๋„ 35.9%์˜ ํ™•๋ฅ ๋กœ ์„ฑ๊ณตํ–ˆ๋‹ค๊ณ  ํ•œ๋‹ค.

์—ฐ๊ตฌ์˜ ๊ณต๋™ ์ €์ž์ด์ž AI ์•ˆ์ „ ๊ธฐ์—… ํ•˜๋ชจ๋‹ˆ ์ธํ…”๋ฆฌ์ „์Šค(Harmony Intelligence)์˜ ์„ค๋ฆฝ์ž์ธ ์†Œ๋กœ์‰ฌ ํ’€(Soroush Pour)์€ "์‚ฌํšŒ๊ฐ€ ์ด๋Ÿฌํ•œ ๋ชจ๋ธ์˜ ์œ„ํ—˜์„ฑ์„ ์ธ์‹ํ•˜๊ธฐ๋ฅผ ๋ฐ”๋ž€๋‹ค"๋ผ๊ณ  ํ˜ธ์†Œํ–ˆ๋‹ค. "ํ˜„์žฌ LLM ์„ธ๋Œ€๊ฐ€ ์ง๋ฉดํ•˜๊ณ  ์žˆ๋Š” ๋ฌธ์ œ๋ฅผ ์„ธ์ƒ์— ๋ณด์—ฌ์ฃผ๊ณ  ์‹ถ์—ˆ๋‹ค"๋ผ๊ณ  ๋ง๋ถ™์˜€๋‹ค.

LLM์ด ํƒ‘์žฌ๋œ ์ฑ—๋ด‡์ด ๋Œ€์ค‘์—๊ฒŒ ๊ณต๊ฐœ๋œ ์ดํ›„, ์ง„์ทจ์ ์ธ ์‚ฌ์šฉ์ž๋“ค์€ ์ฐฝ์˜์ ์ธ ๋ฐฉ๋ฒ•๋“ค๋กœ ํƒˆ์˜ฅ์„ ์œ ๋„ํ–ˆ๋‹ค. ์ฑ—๋ด‡์— ์ ์ ˆํ•œ ์งˆ๋ฌธ์„ ๋˜์ง์œผ๋กœ์จ ๋ฏธ๋ฆฌ ์„ค์ •๋œ ๊ทœ์น™์„ ๋ฌด์‹œํ•˜๊ณ , ๋„ค์ดํŒœ(ํ™”์—ผ์„ฑ ํญ์•ฝ์˜ ์›๋ฃŒ๋กœ ์“ฐ์ด๋Š” ์ ค๋ฆฌ ํ˜•ํƒœ์˜ ๋ฌผ์งˆ) ๋ ˆ์‹œํ”ผ์™€ ๊ฐ™์€ ๋ฒ”์ฃ„์ ์ธ ์กฐ์–ธ์„ ์ œ๊ณตํ•˜๋„๋ก ์„ค๋“ํ•˜๋ฉด์„œ, ์ ๊ทน์ ์ธ ํ”„๋กœ๊ทธ๋žจ ์ˆ˜์ • ์ž‘์—…์ด ์‹œ์ž‘๋๋‹ค.

ํ•˜์ง€๋งŒ AI๊ฐ€ ๋‹ค๋ฅธ AI๋ฅผ ์„ค๋“ํ•ด์„œ ์•ˆ์ „ ๊ทœ์ •์„ ๋ฌด์‹œํ•˜๋„๋ก ํ•˜๋Š” ์ „๋žต์„ ์„ธ์šฐ๋„๋ก ์š”๊ตฌํ•˜๋ฉด, ์ด ๊ณผ์ •์„ 25๋ฐฐ๋‚˜ ๋‹จ์ถ•ํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ์—ฐ๊ตฌ์›๋“ค์€ ๋ฐํ˜”๋‹ค. ๋˜ํ•œ ์„œ๋กœ ๋‹ค๋ฅธ ์ฑ—๋ด‡๋“ค ์‚ฌ์ด์—์„œ ๊ณต๊ฒฉ์ด ์„ฑ๊ณตํ–ˆ๋‹ค๋Š” ๊ฒƒ์€ ์ด ๋ฌธ์ œ๊ฐ€ ๊ฐœ๋ณ„ ๊ธฐ์—…์˜ ์ฝ”๋“œ ๋ฌธ์ œ ์ˆ˜์ค€์„ ๋„˜์–ด์„ ๋‹ค๋Š” ๊ฒƒ์„ ์•”์‹œํ•œ๋‹ค. ์ด ์ทจ์•ฝ์ ์€ ๋” ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ AI๋ฅผ ํƒ‘์žฌํ•œ ์ฑ—๋ด‡์˜ ์„ค๊ณ„์— ๋‚ด์žฌํ•˜์—ฌ ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค.

OpenAI, Anthropic, ๊ทธ๋ฆฌ๊ณ  Vicuna์˜ ๊ฐœ๋ฐœํŒ€์—๊ฒŒ ์ด ๋…ผ๋ฌธ์˜ ๊ฒฐ๊ณผ์— ๋Œ€ํ•œ ๋…ผํ‰์„ ์š”์ฒญํ–ˆ์œผ๋‚˜, OpenAI๋Š” ๋…ผํ‰์„ ๊ฑฐ๋ถ€ํ–ˆ๊ณ , Anthropic๊ณผ Vicuna๋Š” ๋ฐœํ‘œ ์‹œ์ ์— ๋‹ต๋ณ€ ํ•˜์ง€ ์•Š์•˜๋‹ค.

๋๊นŒ์ง€ ์‹ธ์›Œ์•ผ ํ•˜์ง€๋งŒ, ํšŒ์˜์ ์ธ ์‹œ๊ฐ๋„...

์ด๋ฒˆ ์—ฐ๊ตฌ์˜ ๋˜ ๋‹ค๋ฅธ ๊ณต์ €์ž์ธ ๋ฃจ์…ฐ๋ธŒ ์ƒค(Rusheb Shah)๋Š” "ํ˜„์žฌ ์šฐ๋ฆฌ์˜ ๊ณต๊ฒฉ์€ ์ฃผ๋กœ ์•ˆ์ „ ๊ทœ์ •์ด ์žˆ์Œ์—๋„ ๋ชจ๋ธ์ด ๋งํ•˜๊ฒŒ ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค"๋ผ๊ณ  ๋งํ–ˆ๋‹ค. "ํ•˜์ง€๋งŒ ๋ชจ๋ธ์ด ๋” ๊ฐ•๋ ฅํ•ด์งˆ์ˆ˜๋ก ์ด๋Ÿฌํ•œ ๊ณต๊ฒฉ์ด ๋” ์œ„ํ—˜ํ•ด์งˆ ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์•„์งˆ ์ˆ˜ ์žˆ๋‹ค"๋ผ๊ณ  ๊ฒฝ๊ณ ํ–ˆ๋‹ค.

๋ฌธ์ œ๋Š” ํŽ˜๋ฅด์†Œ๋‚˜ ๋ณ€์กฐ๋Š” LLM์˜ ๋งค์šฐ ํ•ต์‹ฌ์ ์ธ ๋ถ€๋ถ„์ด๋ผ๋Š” ์ ์ด๋‹ค. ์ถœ์‹œ๋œ LLM ์„œ๋น„์Šค๋“ค์€ ์‚ฌ์šฉ์ž๊ฐ€ ์›ํ•˜๋Š” ๊ฒƒ์„ ์‹คํ˜„ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋ฅผ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ์ธ๊ฒฉ์œผ๋กœ ์œ„์žฅํ•˜๋Š” ๋ฐ ๋Šฅ์ˆ™ํ•˜๋‹ค. ํƒˆ์˜ฅ ๊ณ„ํš์„ ๊ณ ์•ˆํ•ด ๋‚ธ LLM ์–ด์‹œ์Šคํ„ดํŠธ์™€ ๊ฐ™์ด ์ž ์žฌ์ ์œผ๋กœ ์œ ํ•ดํ•œ ํŽ˜๋ฅด์†Œ๋‚˜๋ฅผ ์‚ฌ์นญํ•˜๋Š” ๋ชจ๋ธ์˜ ๋Šฅ๋ ฅ์„ ๊ทผ์ ˆํ•˜๊ธฐ๋Š” ์–ด๋ ค์šธ ๊ฒƒ์ด๋‹ค. "์ด๋ฅผ ์ œ๋กœํ™”ํ•˜๋Š” ๊ฒƒ์€ ์•„๋งˆ๋„ ๋น„ํ˜„์‹ค์ ์ผ ๊ฒƒ์ด๋‹ค"๋ผ๊ณ  ์ƒค๋Š” ๋งํ•œ๋‹ค. ํ•˜์ง€๋งŒ ํƒˆ์˜ฅ ๊ฐ€๋Šฅ์„ฑ์„ ์ตœ์†Œํ™”ํ•˜๋Š” ์‹œ๋„๊ฐ€ ์ค‘์š”ํ•˜๋‹ค๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

์ด๋ฒˆ ์—ฐ๊ตฌ์— ์ฐธ์—ฌํ•˜์ง€ ์•Š์€ ์˜๊ตญ ์•จ๋ŸฐํŠœ๋ง์—ฐ๊ตฌ์†Œ์˜ ์œค๋ฆฌ ์—ฐ๊ตฌ์›์ธ ๋งˆ์ดํฌ ์นดํ…”(Mike Katell)์€ "๋งˆ์ดํฌ๋กœ์†Œํ”„ํŠธ์˜ ํ…Œ์ด(Tay)๊ฐ€ ์ธ์ข…์ฐจ๋ณ„์ , ์„ฑ์ฐจ๋ณ„์  ๊ด€์ ์„ ๋‚ด๋ฑ‰๋„๋ก ์‰ฝ๊ฒŒ ์กฐ์ž‘๋œ ๊ฒƒ๊ณผ ๊ฐ™์€ ์ด์ „์˜ ์ฑ„ํŒ… ์—์ด์ „ํŠธ ๊ฐœ๋ฐœ ์‹œ๋„์—์„œ ๊ตํ›ˆ์„ ์–ป์—ˆ์–ด์•ผ ํ–ˆ๋‹ค"๋ผ๋ฉฐ "ํŠนํžˆ ์ธํ„ฐ๋„ท์— ์žˆ๋Š” ๋ชจ๋“  ์ข‹์€ ์ •๋ณด์™€ ๋‚˜์œ ์ •๋ณด๋ฅผ ํ†ตํ•ด ํ›ˆ๋ จ๋œ๋‹ค๋Š” ์ ์„ ๊ฐ์•ˆํ•  ๋•Œ ํ†ต์ œํ•˜๊ธฐ๊ฐ€ ๋งค์šฐ ์–ด๋ ต๋‹ค๋Š” ์‚ฌ์‹ค์„ ๊นจ๋‹ฌ์•˜์–ด์•ผ ํ–ˆ๋‹ค"๋ผ๊ณ  ๊ผฌ์ง‘์—ˆ๋‹ค.

์นดํ…”์€ LLM ๊ธฐ๋ฐ˜ ์ฑ—๋ด‡์„ ๊ฐœ๋ฐœํ•˜๋Š” ์กฐ์ง๋“ค์ด ํ˜„์žฌ ๋ณด์•ˆ์„ ๊ฐ•ํ™”ํ•˜๊ธฐ ์œ„ํ•ด ํฐ ๋…ธ๋ ฅ์„ ๊ธฐ์šธ์ด๊ณ  ์žˆ์Œ์„ ์ธ์ •ํ–ˆ๋‹ค. ๊ฐœ๋ฐœ์ž๋“ค์€ ์‚ฌ์šฉ์ž๊ฐ€ ์‹œ์Šคํ…œ์„ ํƒˆ์˜ฅ์‹œ์ผœ์„œ ํ•ด๋กœ์šด ์ผ์„ ํ•  ์ˆ˜ ์žˆ๋Š” ๋Šฅ๋ ฅ์„ ์–ต์ œํ•˜๋ ค๊ณ  ๋…ธ๋ ฅํ•˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์นดํ…”์€ ๊ฒฝ์Ÿ์‹ฌ์— ์˜ํ•œ ์ถฉ๋™์ด ๊ฒฐ๊ตญ์—๋Š” ์Šน๋ฆฌํ•  ์ˆ˜๋„ ์žˆ๋‹ค๊ณ  ์šฐ๋ ค๋ฅผ ํ‘œํ–ˆ๋‹ค. "LLM ์ œ๊ณต์—…์ฒด๋“ค์ด ์ด๋Ÿฐ ์‹œ์Šคํ…œ์„ ์œ ์ง€ํ•˜๊ธฐ ์œ„ํ•ด ์–ด๋””๊นŒ์ง€ ๋…ธ๋ ฅํ• ๊นŒ์š”? ์ ์–ด๋„ ๋ช‡๋ช‡์€ ์•„๋งˆ๋„ ๋…ธ๋ ฅ์— ์ง€์ณ์„œ ๊ทธ๋ƒฅ ๋‚ด๋ฒ„๋ ค๋‘˜ ๊ฒƒ์ž…๋‹ˆ๋‹ค."


Jailbroken AI Chatbots Can Jailbreak Other Chatbots

AI chatbots can convince other chatbots to instruct users how to build bombs and cook meth

Todayโ€™s artificial intelligence chatbots have built-in restrictions to keep them from providing users with dangerous information, but a new preprint study shows how to get AIs to trick each other into giving up those secrets. In it, researchers observed the targeted AIs breaking the rules to offer advice on how to synthesize methamphetamine, build a bomb and launder money.

Modern chatbots have the power to adopt personas by feigning specific personalities or acting like fictional characters. The new study took advantage of that ability by asking a particular AI chatbot to act as a research assistant. Then the researchers instructed this assistant to help develop prompts that could โ€œjailbreakโ€ other chatbotsโ€”destroy the guardrails encoded into such programs.

The research assistant chatbotโ€™s automated attack techniques proved to be successful 42.5 percent of the time against GPT-4, one of the large language models (LLMs) that power ChatGPT. It was also successful 61 percent of the time against Claude 2, the model underpinning Anthropicโ€™s chatbot, and 35.9 percent of the time against Vicuna, an open-source chatbot.

โ€œWe want, as a society, to be aware of the risks of these models,โ€ says study co-author Soroush Pour, founder of the AI safety company Harmony Intelligence. โ€œWe wanted to show that it was possible and demonstrate to the world the challenges we face with this current generation of LLMs.โ€

Ever since LLM-powered chatbots became available to the public, enterprising mischief-makers have been able to jailbreak the programs. By asking chatbots the right questions, people have previously convinced the machines to ignore preset rules and offer criminal advice, such as a recipe for napalm. As these techniques have been made public, AI model developers have raced to patch themโ€”a cat-and-mouse game requiring attackers to come up with new methods. That takes time.

But asking AI to formulate strategies that convince other AIs to ignore their safety rails can speed the process up by a factor of 25, according to the researchers. And the success of the attacks across different chatbots suggested to the team that the issue reaches beyond individual companiesโ€™ code. The vulnerability seems to be inherent in the design of AI-powered chatbots more widely.

OpenAI, Anthropic and the team behind Vicuna were approached to comment on the paperโ€™s findings. OpenAI declined to comment, while Anthropic and Vicuna had not responded at the time of publication.

โ€œIn the current state of things, our attacks mainly show that we can get models to say things that LLM developers donโ€™t want them to say,โ€ says Rusheb Shah, another co-author of the study. โ€œBut as models get more powerful, maybe the potential for these attacks to become dangerous grows.โ€

The challenge, Pour says, is that persona impersonation โ€œis a very core thing that these models do.โ€ They aim to achieve what the user wants, and they specialize in assuming different personalitiesโ€”which proved central to the form of exploitation used in the new study. Stamping out their ability to take on potentially harmful personas, such as the โ€œresearch assistantโ€ that devised jailbreaking schemes, will be tricky. โ€œReducing it to zero is probably unrealistic,โ€ Shah says. โ€œBut it's important to think, โ€˜How close to zero can we get?โ€™โ€

โ€œWe should have learned from earlier attempts to create chat agentsโ€”such as when Microsoftโ€™s Tay was easily manipulated into spouting racist and sexist viewpointsโ€”that they are very hard to control, particularly given that they are trained from information on the Internet and every good and nasty thing thatโ€™s in it,โ€ says Mike Katell, an ethics fellow at the Alan Turing Institute in England, who was not involved in the new study.

Katell acknowledges that organizations developing LLM-based chatbots are currently putting lots of work into making them safe. The developers are trying to tamp down usersโ€™ ability to jailbreak their systems and put those systems to nefarious work, such as that highlighted by Shah, Pour and their colleagues. Competitive urges may end up winning out, however, Katell says. โ€œHow much effort are the LLM providers willing to put in to keep them that way?โ€ he says. โ€œAt least a few will probably tire of the effort and just let them do what they do.โ€

Picture

Member for

8 months 2 weeks
Real name
์ดํƒœ์„ 
Position
์—ฐ๊ตฌ์›
Bio
[email protected]
์„ธ์ƒ์€ ์ด์•ผ๊ธฐ๋กœ ๋งŒ๋“ค์–ด์ ธ ์žˆ์Šต๋‹ˆ๋‹ค. ๋‹ค๋งŒ ์šฐ๋ฆฌ ๋ˆˆ์— ๊ทธ ์ด์•ผ๊ธฐ๊ฐ€ ๋ณด์ด์ง€ ์•Š์„ ๋ฟ์ž…๋‹ˆ๋‹ค. ์ˆจ๊ฒจ์ง„ ์ด์•ผ๊ธฐ๋ฅผ ์ฐพ์•„๋‚ด์„œ ํ•จ๊ป˜ ๊ณต์œ ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.

๊ด€๋ จ๊ธฐ์‚ฌ

Previous Next

'์‚ผ์ฉœ์‚ผ' ์šด์˜ ์ž๋น„์Šค์•ค๋นŒ๋Ÿฐ์ฆˆ, ๊ฐ€์นญ '์‚ผ์ฉœ์‚ผ๋ฑ…ํฌ'๋กœ ์ œ4์ธํ„ฐ๋„ท์ „๋ฌธ์€ํ–‰ ์˜ˆ๋น„์ธ๊ฐ€ ๋ชฉํ‘œ

'์‚ผ์ฉœ์‚ผ' ์šด์˜ ์ž๋น„์Šค์•ค๋นŒ๋Ÿฐ์ฆˆ, ๊ฐ€์นญ '์‚ผ์ฉœ์‚ผ๋ฑ…ํฌ'๋กœ ์ œ4์ธํ„ฐ๋„ท์ „๋ฌธ์€ํ–‰ ์˜ˆ๋น„์ธ๊ฐ€ ๋ชฉํ‘œ
Picture

Member for

8 months 2 weeks
Real name
์ด๋™์ง„
Position
๊ธฐ์ž
Bio
[email protected]
ํ‘๋ฐฑ์˜ ์„ธ์ƒ์—์„œ ํšŒ์ƒ‰์ง€๋Œ€๋ฅผ ์ฐพ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์‚ฐ์—… ํ˜„์žฅ์„ ์ทจ์žฌํ•œ ๊ฒฝํ—˜์„ ํ†ตํ•ด IT ๊ธฐ์—…๋“ค์˜ ํ˜„์žฌ์™€ ๊ทธ ์†์— ๋‹ด๊ธธ ํ•œ๊ตญ์˜ ๋ฏธ๋ž˜๋ฅผ ์ „ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.

์ˆ˜์ •

์ž๋น„์Šค์•ค๋นŒ๋Ÿฐ์ฆˆ, ์ธํ„ฐ๋„ท์ „๋ฌธ์€ํ–‰ ์„ค๋ฆฝ ์œ„ํ•œ ์ปจ์†Œ์‹œ์—„ ์ถ”์ง„ ์ค‘
๊ธฐ์กด ๊ธˆ์œต๊ถŒ์—์„œ ์™ธ๋ฉดํ–ˆ๋˜ ์†Œ์ƒ๊ณต์ธ ๋ฐ ํ”„๋ฆฌ๋žœ์„œ ๊ณ ๊ฐ ์ ๊ทน ์œ ์น˜
โ€˜ํ˜์‹ ์„ฑโ€™ ๋ฐ โ€˜์•ˆ์ •์  ํˆฌ์ž์žโ€™ ํ™•๋ณด ์—ฌ๋ถ€๊ฐ€ ์ธํ„ฐ๋„ท์ „๋ฌธ์€ํ–‰ ์„ค๋ฆฝ ์ขŒ์šฐํ•  ๋“ฏ
dd

์„ธ๊ธˆ ์‹ ๊ณ ยทํ™˜๊ธ‰ ์ง€์› ํ”Œ๋žซํผ โ€˜์‚ผ์ฉœ์‚ผโ€™์„ ์šด์˜ํ•˜๋Š” ์ž๋น„์Šค์•ค๋นŒ๋Ÿฐ์ฆˆ๊ฐ€ ๋‚ด๋…„ ์˜ˆ๋น„์ธ๊ฐ€๋ฅผ ๋ชฉํ‘œ๋กœ ์ธํ„ฐ๋„ท์ „๋ฌธ์€ํ–‰ ์„ค๋ฆฝ์„ ์ถ”์ง„ํ•œ๋‹ค. ๊ฐœ์ธ์‚ฌ์—…์ž๋‚˜ ํŒŒํŠธํƒ€์ด๋จธ, ํ”„๋ฆฌ๋žœ์„œ ๋“ฑ ๋‹ค์–‘ํ•œ ํ˜•ํƒœ๋กœ ์ง„ํ™” ์ค‘์ธ N์žก๋Ÿฌ๋ฅผ ์ ๊ทน ์œ ์น˜ํ•ด ๊ธฐ์กด ์ธํ„ฐ๋„ท์€ํ–‰๊ณผ ์ฐจ๋ณ„ํ™”๋ฅผ ๊พ€ํ•œ๋‹ค๋Š” ์ „๋žต์ด๋‹ค. ๊ธˆ์œต์œ„์›ํšŒ๊ฐ€ ์ง€๋‚œ 7์›” ์ธํ„ฐ๋„ท์ „๋ฌธ์€ํ–‰ ์‹ฌ์‚ฌ ๋ฌธํ„ฑ์„ ๋‚ฎ์ถ”๋ฉด์„œ ์ธํ„ฐ๋„ท์ „๋ฌธ์€ํ–‰ ์„ค๋ฆฝ์ด ๊ธ‰๋ฌผ์‚ด์„ ํƒ„ ๊ฐ€์šด๋ฐ ์•ˆ์ •์  ์ž๋ณธ๋ ฅ ํ™•๋ณด์™€ ๊ธˆ์œต ์ ‘๊ทผ์„ฑ ๊ฐœ์„  ๋“ฑ์˜ ํ˜์‹ ์„ฑ์ด ์ œ4์ธํ„ฐ๋„ท์ „๋ฌธ์€ํ–‰ ์ง„์ถœ ์—ฌ๋ถ€๋ฅผ ๊ฐ€๋ฅผ ์ „๋ง์ด๋‹ค.

์ธํ„ฐ๋„ท์ „๋ฌธ์€ํ–‰ ์„ค๋ฆฝ ๋„์ „์žฅ ๋˜์ง„ โ€˜์ž๋น„์Šค์•ค๋นŒ๋Ÿฐ์ฆˆโ€™

6์ผ ์ž๋น„์Šค์•ค๋นŒ๋Ÿฐ์ฆˆ๋Š” ๊ธˆ์œต ์‚ฌ๊ฐ์ง€๋Œ€ ํ•ด์†Œ๋ฅผ ์œ„ํ•ด ์ œ4์ธํ„ฐ๋„ท์ „๋ฌธ์€ํ–‰ ์„ค๋ฆฝ์„ ์ถ”์ง„ํ•œ๋‹ค๊ณ  ๋ฐํ˜”๋‹ค. ๊ฐ€์นญ '์‚ผ์ฉœ์‚ผ๋ฑ…ํฌ' ์˜ˆ๋น„์ธ๊ฐ€๋ฅผ ์œ„ํ•ด ์ž๋น„์Šค์•ค๋นŒ๋Ÿฐ์ฆˆ๋Š” ๊ธฐ์กด ๊ธˆ์œต๊ถŒ ๋ฐ ์œ ๋ช… ํ”Œ๋žซํผ ๋“ฑ๊ณผ ๊ตฌ์ฒด์ ์ธ ์„ค๋ฆฝ ์ผ์ •์„ ํ˜‘์˜ํ•˜๊ณ  ์žˆ๋‹ค. ์ปจ์†Œ์‹œ์—„ ๊ตฌ์„ฑ์ด ์™„๋ฃŒ๋˜๋ฉด ๋‚ด๋…„ ์ดˆ ์„ค๋ฆฝ ์˜ˆ๋น„์ธ๊ฐ€ ์‹ ์ฒญ์„ ์ง„ํ–‰ํ•  ์˜ˆ์ •์ด๋‹ค.

2020๋…„ 5์›” ์„ ๋ณด์ธ ์‚ผ์ฉœ์‚ผ ์„œ๋น„์Šค๋Š” ์„ธ๊ธˆ ์‹ ๊ณ ์™€ ํ™˜๊ธ‰์„ ๋Œ€๋ฆฌํ•˜๋Š” ์ธํ„ฐ๋„ท ํ”Œ๋žซํผ์ด๋‹ค. 3๋…„๊ฐ„ ๋ˆ„์  ๊ฐ€์ž…์ž ์ˆ˜๋Š” ์˜ฌํ•ด 10์›” ๊ธฐ์ค€ ์•ฝ 1,800๋งŒ ๋ช…์— ์ด๋ฅด๋ฉฐ, ์ด 9,099์–ต์›๊ฐ€๋Ÿ‰์˜ ์„ธ๊ธˆ ํ™˜๊ธ‰์„ ๋„์™”๋‹ค. ์‚ผ์ฉœ์‚ผ๋ฑ…ํฌ๋Š” ์ด๋Ÿฌํ•œ ์„ฑ๊ณต์„ ๋ฐ”ํƒ•์œผ๋กœ ๊ธฐ์กด ์ธํ„ฐ๋„ท์€ํ–‰๊ณผ ์ฐจ๋ณ„ํ™”๋ฅผ ์œ„ํ•ด ์€ํ–‰ ๋“ฑ 1๊ธˆ์œต๊ถŒ ํ˜œํƒ์„ ๋ฐ›๋Š” ๊ทผ๋กœ์†Œ๋“์ž๋‚˜ ์‚ฌ์—…์ž๋Š” ๋ฌผ๋ก , ๊ทผ๋กœ์†Œ๋“์„ ์œ ์ง€ํ•˜๋ฉฐ ๊ฐœ์ธ ์‚ฌ์—…์„ ์šด์˜ํ•˜๋Š” ์†Œ๋น„์ž๋“ค์„ ์ฃผ์š” ๊ณ ๊ฐ์ธต์œผ๋กœ ์‚ผ์„ ์˜ˆ์ •์ด๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์ž๋น„์Šค์•ค๋นŒ๋Ÿฐ์ฆˆ๋Š” ์ง€๋‚œํ•ด 8์›” ๋‚˜์ด์Šคํ‰๊ฐ€์ •๋ณด์™€ ์—…๋ฌดํ˜‘์•ฝ(MOU)์„ ๋งบ๊ณ  ์˜ฌ ์ดˆ ๋Œ€์•ˆ ์‹ ์šฉํ‰๊ฐ€๋ชจ๋ธ ๊ฐœ๋ฐœ ์‚ฌ์—…์„ ์œ„ํ•œ ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ์‹œ์ž‘ํ–ˆ๋‹ค. ํ•ด๋‹น ์‹ ์šฉํ‰๊ฐ€๋ชจ๋ธ ๊ฐœ๋ฐœ์ด ์™„๋ฃŒ๋˜๋ฉด ๊ธˆ์œต ํ˜œํƒ ์‚ฌ๊ฐ์ง€๋Œ€์— ๋†“์ธ ์ด๋“ค์—๊ฒŒ ํŠนํ™”๋œ ๊ธˆ์œต ์„œ๋น„์Šค๋ฅผ ์ œ๊ณตํ•  ๋ฐฉ์นจ์ด๋‹ค.

๊น€๋ฒ”์„ญ ์ž๋น„์Šค์•ค๋นŒ๋Ÿฐ์ฆˆ ๋Œ€ํ‘œ๋Š” โ€œ๋„ค ๋ฒˆ์งธ ์ธํ„ฐ๋„ท๋ฑ…ํฌ ์‚ผ์ฉœ์‚ผ๋ฑ…ํฌ๋Š” ๊ธฐ์กด ์ „ํ†ต ๊ธˆ์œต๊ณผ 1์„ธ๋Œ€์™€ 2์„ธ๋Œ€ ์ธํ„ฐ๋„ท ๊ธˆ์œต์—์„œ ํ˜œํƒ์„ ๋ฐ›์ง€ ๋ชปํ–ˆ๋˜ ๊ตญ๋ฏผ๋“ค์ด 1๊ธˆ์œต๊ถŒ์˜ ํ˜œํƒ์„ ๋ˆ„๋ฆด ์ˆ˜ ์žˆ๊ฒŒ ํ•˜๋Š” ๋ฐ ์ง‘์ค‘ํ•˜๊ณ  ์žˆ๋‹คโ€๋ฉฐ โ€œ์ปจ์†Œ์‹œ์—„ ๊ตฌ์„ฑ๊ณผ ํ•จ๊ป˜ ๋‚ด๋…„ ์ƒ๋ฐ˜๊ธฐ ์˜ˆ๋น„์ธ๊ฐ€๋ฅผ ๋ชฉํ‘œ๋กœ ํ•˜๊ฒ ๋‹คโ€๊ณ  ๋งํ–ˆ๋‹ค.

๋‹ค๋งŒ ํ˜„์žฌ ์€ํ–‰๊ถŒ์˜ ์ฐธ์—ฌ ์—ฌ๋ถ€๋Š” ๋ถˆํˆฌ๋ช…ํ•œ ์ƒํ™ฉ์ด๋‹ค. ๋‚ด๋…„๋„ ๊ธฐ์ค€๊ธˆ๋ฆฌ ์ธํ•˜๊ฐ€ ์˜ˆ์ƒ๋จ์— ๋”ฐ๋ผ ์ˆ˜์ต์„ฑ ๋‘”ํ™”๊ฐ€ ๋‚˜ํƒ€๋‚  ๊ฑฐ๋ž€ ์ „๋ง์ด ๊ณต๊ฐ์„ ์–ป๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๊ตญ๋‚ด ๊ธˆ์œตํˆฌ์ž ์—…๊ณ„ ๊ด€๊ณ„์ž๋Š” โ€œํ˜„์žฌ ์‹œ์žฅ์—์„  ํ•œ๊ตญ ๊ธฐ์ค€๊ธˆ๋ฆฌ ์ธ์ƒ์ด ์‚ฌ์‹ค์ƒ ์ข…๋ฃŒ๋๋‹ค๋Š” ์˜๊ฒฌ์ด ์ง€๋ฐฐ์ ์ธ ๊ฐ€์šด๋ฐ ์ด์— ๋”ฐ๋ผ ๋‚ด๋…„ ์€ํ–‰์—… ์ˆ˜์ต์„ฑ์€ ๋‹น๋ถ„๊ฐ„ ๋‘”ํ™”๋  ๊ฒƒโ€์ด๋ผ๋ฉฐ โ€œ๊ธฐ์ค€๊ธˆ๋ฆฌ๊ฐ€ ๊ณ ์ ์„ ์ฐ๊ณ  ๋‚ด๋ ค์˜ค๋Š” ์‹œ๊ธฐ์—์„  ์€ํ–‰ ์ˆœ์ด์ต ์„ฑ์žฅ๋ฅ ๊ณผ ์ˆœ์ด์ž๋งˆ์ง„(NIM), ๋Œ€์ถœ์„ฑ์žฅ๋ฅ  ๋“ฑ์ด ๋ชจ๋‘ ๋ถ€์ง„ํ•œ๋‹คโ€๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

์€ํ–‰๊ถŒ์ด ํ•ด๋‹น ์—…์ข… ์ง„์ถœ๋ณด๋‹ค ์ž์ฒด ์‚ฌ์—… ์—ญ๋Ÿ‰ ๊ฐ•ํ™”์— ํž˜์„ ์Ÿ๊ณ  ์žˆ๋Š” ์ ๋„ ์ธํ„ฐ๋„ท์ „๋ฌธ์€ํ–‰ ์„ค๋ฆฝ์— ์ œ๋™์„ ๊ฑฐ๋Š” ์š”์†Œ๋‹ค. ํŠนํžˆ 5๋Œ€ ์€ํ–‰ ๊ฐ€์šด๋ฐ ์œ ์ผํ•˜๊ฒŒ ์ธํ„ฐ๋„ท์ „๋ฌธ์€ํ–‰ ์ง€๋ถ„์ด ์—†๋Š” ์‹ ํ•œ๊ธˆ์œต์€ ์ด๋‹ฌ ์Šˆํผ์•ฑ โ€˜์ŠˆํผSOLโ€™ ์ถœ์‹œ ๊ณ„ํš์„ ๋‚ด๋†“์œผ๋ฉฐ ๋””์ง€ํ„ธ ์—ญ๋Ÿ‰ ๊ฐ•ํ™”์— ์ „๋…ํ•˜๊ณ  ์žˆ๋‹ค. ์—ฌ๊ธฐ์— ์ฃผ์š” ๊ธˆ์œต๊ทธ๋ฃน๋“ค๋„ ๋Œ€๋ถ€๋ถ„ ์ฝ”๋กœ๋‚˜19 ํŒฌ๋ฐ๋ฏน ์ดํ›„ ํ™•์‚ฐ๋œ ๋น„๋Œ€๋ฉด ๊ฑฐ๋ž˜ ํ๋ฆ„์„ ํƒ€๊ธฐ ์œ„ํ•ด ์ž์ฒด ๋””์ง€ํ„ธ ์—ญ๋Ÿ‰ ๊ฐ•ํ™”๋ฅผ ๊พ€ํ•˜๊ณ  ์žˆ๋‹ค. ๊ณผ๊ฑฐ ๊ธˆ์œต์ง€์ฃผ ๋Œ€๋ถ€๋ถ„์ด ์ธํ„ฐ๋„ท์ „๋ฌธ์€ํ–‰ ์ง„์ถœ์— ๊ธ์ •์ ์ด์—ˆ๋˜ ๊ฒƒ๊ณผ๋Š” ์‚ฌ๋ญ‡ ๋‹ฌ๋ผ์ง„ ์ƒํ™ฉ์—์„œ ์ œ4์ธํ„ฐ๋„ท์ „๋ฌธ์€ํ–‰์„ ๋…ธ๋ฆฌ๋Š” ์€ํ–‰๊ถŒ์ด ์•ˆ์ •์ ์ธ ํˆฌ์ž์ž๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ์„์ง€ ์—…๊ณ„ ๊ด€์‹ฌ์ด ์ ๋ฆฐ๋‹ค.

BI_-
์‚ฌ์ง„=์ž๋น„์Šค์•ค๋นŒ๋Ÿฐ์ฆˆ

์ œ4์ธํ„ฐ๋„ท์ „๋ฌธ์€ํ–‰ ์ง„์ถœ ์—ฌ๋ถ€ ๊ฐ€๋ฅผ ํ•ต์‹ฌ ์š”์†Œ

์ œ4์ธํ„ฐ๋„ท์ „๋ฌธ์€ํ–‰ ์„ค๋ฆฝ์„ ์ถ”์ง„ ์ค‘์ธ ๊ณณ์€ ์ž๋น„์Šค์•ค๋นŒ๋Ÿฐ์ฆˆ ์™ธ์—๋„ ๋” ์žˆ๋‹ค. 7์ผ ๊ธˆ์œต๊ถŒ์— ๋”ฐ๋ฅด๋ฉด ์ „๋‚  ์ง€์—ญ๋ณ„ ์†Œ์ƒ๊ณต์ธ์—ฐํ•ฉํšŒ๊ฐ€ ์ฃผ์ถ•์ธ ์†Œ์†Œ๋ฑ…ํฌ ์„ค๋ฆฝ์ค€๋น„์œ„์›ํšŒ๊ฐ€ โ€˜์†Œ์†Œ๋ฑ…ํฌโ€™ ์„ค๋ฆฝ์„ ๊ณต์‹ํ™”ํ–ˆ์œผ๋ฉฐ, ํ•œ๊ตญ์‹ ์šฉ๋ฐ์ดํ„ฐ(KCD)๋„ ํŠนํ™” ์ธํ„ฐ๋„ท์ „๋ฌธ์€ํ–‰์„ ๊ฒ€ํ† ํ•˜๊ณ  ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์กŒ๋‹ค.

์ธํ„ฐ๋„ท์ „๋ฌธ์€ํ–‰ ์„ค๋ฆฝ์ด ๊ธ‰๋ฌผ์‚ด์„ ํƒ„ ๊ฒƒ์€ ์ง€๋‚œ 7์›” ๊ธˆ์œต์œ„๊ฐ€ ์€ํ–‰๊ถŒ ๊ฒฝ์Ÿ์„ ์ด‰์ง„ํ•˜๊ธฐ ์œ„ํ•ด ์ธํ„ฐ๋„ท์ „๋ฌธ์€ํ–‰ ์‹ฌ์‚ฌ ๋ฌธํ„ฑ์„ ๋‚ฎ์ถ”๋ฉด์„œ๋‹ค. ๊ธˆ์œต์œ„๋Š” ๋‹น์‹œ โ€œ๊ธฐ์กด์—๋Š” ์ธ๊ฐ€๋ฐฉ์นจ ๋ฐœํ‘œ ๋’ค ์‹ ๊ทœ ์ธ๊ฐ€ ์‹ ์ฒญยท์‹ฌ์‚ฌ๊ฐ€ ์ง„ํ–‰๋๋‹คโ€๋ฉฐ โ€œ์•ž์œผ๋กœ๋Š” ์ถฉ๋ถ„ํ•œ ๊ฑด์ „์„ฑ๊ณผ ์‚ฌ์—…๊ณ„ํš ๋“ฑ์„ ๊ฐ–์ถ˜ ์‚ฌ์—…์ž์— ์—„๊ฒฉํ•œ ์‹ฌ์‚ฌ๋ฅผ ๊ฑฐ์ณ ์‹ ๊ทœ ์ธ๊ฐ€๋ฅผ ๋‚ด์ฃผ๊ฒ ๋‹คโ€๊ณ  ๋ฐํžŒ ๋ฐ” ์žˆ๋‹ค.

์ธํ„ฐ๋„ท์ „๋ฌธ์€ํ–‰ ์ถœ๋ฒ”์€ ์€ํ–‰์—… ํŠน์„ฑ์ƒ ์•ˆ์ •์  ์ž๋ณธ๋ ฅ ํ™•๋ณด๊ฐ€ ํ•ต์‹ฌ์ด๋‹ค. ์ด์— ๋”ฐ๋ผ ์ฃผ์š” ์€ํ–‰๊ณผ ๊ฐ™์€ ์•ˆ์ •์  ํˆฌ์ž์ž ํ™•๋ณด๊ฐ€ ์ œ4์ธํ„ฐ๋„ท์ „๋ฌธ์€ํ–‰ ์ง„์ถœ ์—ฌ๋ถ€๋ฅผ ๊ฒฐ์ •์ง€์„ ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค. ๊ณผ๊ฑฐ ๊ธˆ์œต์œ„๋Š” 2019๋…„ ํ† ์Šค๋ฑ…ํฌ์™€ ํ‚ค์›€๋ฑ…ํฌ๋ฅผ ์‹ฌ์‚ฌ์—์„œ ๋‚˜๋ž€ํžˆ ํƒˆ๋ฝ์‹œํ‚จ ๋’ค ์€ํ–‰์—…์˜ ํ•ต์‹ฌ ์š”์†Œ๋กœ ์ž๋ณธ์กฐ๋‹ฌ ๋Šฅ๋ ฅ์„ ๊ฐ•์กฐํ•œ ๋ฐ” ์žˆ๋‹ค. ์‹ค์ œ๋กœ ์‹ ํ•œ์€ํ–‰์„ ์ œ์™ธํ•œ ์‹œ์ค‘ 4๋Œ€ ์€ํ–‰ ๋ชจ๋‘ ํ˜„ ์ธํ„ฐ๋„ท์ „๋ฌธ์€ํ–‰ 3๊ณณ ์„ค๋ฆฝ์— ์žฌ๋ฌด์  ํˆฌ์ž์ž๋กœ ์ฐธ์—ฌํ–ˆ๋‹ค.

๊ธˆ์œต ์ ‘๊ทผ์„ฑ ๊ฐœ์„  ๋“ฑ ํ˜์‹ ์„ฑ ๋˜ํ•œ ์ œ4์ธํ„ฐ๋„ท์ „๋ฌธ์€ํ–‰ ์ง„์ถœ ์—ฌ๋ถ€๋ฅผ ๊ฐ€๋ฅผ ํ•ต์‹ฌ ์š”์†Œ๋กœ ๊ผฝํžŒ๋‹ค. ์ธํ„ฐ๋„ท์ „๋ฌธ์€ํ–‰์€ ์„ค๋ฆฝ ์ทจ์ง€์ƒ ํ•€ํ…Œํฌ ๊ธฐ์ˆ ์„ ํ™œ์šฉํ•œ ์ค‘์ €์‹ ์šฉ์ž ๋Œ€์ถœ ๊ณต๊ธ‰์ด ์ฃผ๋ชฉ์ ์ด๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๊ณผ๊ฑฐ ํ‚ค์›€๋ฑ…ํฌ๋Š” ํ˜์‹ ์„ฑ์ด ๋ถ€์กฑํ•˜๋‹ค๋Š” ๊ธˆ์œต์œ„์˜ ํŒ๋‹จ์— ๋”ฐ๋ผ ์ธํ„ฐ๋„ท์ „๋ฌธ์€ํ–‰ ์ถœ๋ฒ”์— ์‹คํŒจํ–ˆ์œผ๋ฉฐ, ํ† ์Šค๋ฑ…ํฌ์˜ ์ฒซ ๋„์ „ ๋‹น์‹œ ์‹ ํ•œ๊ธˆ์œต๋„ ์‚ฌ์—…๊ณ„ํš์— ์˜๊ตฌ์‹ฌ์„ ํ’ˆ์œผ๋ฉฐ ์ปจ์†Œ์‹œ์—„์—์„œ ํƒˆํ‡ดํ•œ ๋ฐ” ์žˆ๋‹ค.

Picture

Member for

8 months 2 weeks
Real name
์ด๋™์ง„
Position
๊ธฐ์ž
Bio
[email protected]
ํ‘๋ฐฑ์˜ ์„ธ์ƒ์—์„œ ํšŒ์ƒ‰์ง€๋Œ€๋ฅผ ์ฐพ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์‚ฐ์—… ํ˜„์žฅ์„ ์ทจ์žฌํ•œ ๊ฒฝํ—˜์„ ํ†ตํ•ด IT ๊ธฐ์—…๋“ค์˜ ํ˜„์žฌ์™€ ๊ทธ ์†์— ๋‹ด๊ธธ ํ•œ๊ตญ์˜ ๋ฏธ๋ž˜๋ฅผ ์ „ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.

๊ด€๋ จ๊ธฐ์‚ฌ

Previous Next

์˜คํ”ˆAI ํ˜ผ๋ž€ ํ‹ˆํƒ€ โ€˜์ œ๋ฏธ๋‹ˆโ€™ ์ถœ์‹œํ•œ ๊ตฌ๊ธ€, ๋น…ํ…Œํฌ 3๋Œ€ ์ง„์˜์˜ โ€˜AI ํŒจ๊ถŒ ์ „์Ÿโ€™ ๊ฒฉํ™”

์˜คํ”ˆAI ํ˜ผ๋ž€ ํ‹ˆํƒ€ โ€˜์ œ๋ฏธ๋‹ˆโ€™ ์ถœ์‹œํ•œ ๊ตฌ๊ธ€, ๋น…ํ…Œํฌ 3๋Œ€ ์ง„์˜์˜ โ€˜AI ํŒจ๊ถŒ ์ „์Ÿโ€™ ๊ฒฉํ™”
Picture

Member for

8 months 2 weeks
Real name
์ž„์„ ์ฃผ
Position
๊ธฐ์ž
Bio
[email protected]
๋ฏธ๋””์–ด์˜ ์˜ํ–ฅ๋ ฅ์„ ๋ฌด๊ฒ๊ฒŒ ์ธ์ง€ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์˜ˆ๋ฆฌํ•œ ์‹œ๊ฐ๊ณผ ๋ถ„์„๋ ฅ์„ ๋ฐ”ํƒ•์œผ๋กœ ๊ณต์ •ํ•˜๊ณ  ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ์ •๋ณด๋งŒ์„ ์ „๋‹ฌํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.

์ˆ˜์ •

๊ตฌ๊ธ€ LLM โ€˜์ œ๋ฏธ๋‹ˆโ€™ ๊ณต๊ฐœ, ์‚ฌ๋žŒ์ฒ˜๋Ÿผ ์‚ฌ๋ฌผ ์ธ์‹ยทํŒ๋‹จํ•œ๋‹ค
2์ฒœ ๋ช… ์ด์ƒ AI ์—ฐ๊ตฌ์› ๋ฐ ์—”์ง€๋‹ˆ์–ด๋“ค ๋Œ€๊ฑฐ ํˆฌ์ž…
๋ฉ”ํƒ€ยทIBM ์—ฐํ•ฉ๊ตฐ, X.AI, ์•„๋งˆ์กด ๋“ฑ๋„ AI ์ „์Ÿ์— ๋„์ „์žฅ
231208_๊ตฌ๊ธ€_์ œ๋ฏธ๋‚˜์ด
์ œ๋ฏธ๋‹ˆ๊ฐ€ ์˜ค๋ฆฌ ์ธํ˜•์˜ ๋ชจ์Šต์„ ๋ณด๊ณ  ์†Œ์žฌ๋ฅผ ๋ถ„์„ํ•˜๋Š” ๋ชจ์Šต/์‚ฌ์ง„=๊ตฌ๊ธ€

๊ตฌ๊ธ€์ด ์ดˆ๊ฑฐ๋Œ€์–ธ์–ด๋ชจ๋ธ(LLM) ๊ธฐ๋ฐ˜์˜ ์ฐจ์„ธ๋Œ€ ์ธ๊ณต์ง€๋Šฅ(AI) ๋ชจ๋ธ โ€˜์ œ๋ฏธ๋‹ˆโ€™(Gemini)๋ฅผ ๋‚ด๋†จ๋‹ค. ์ด๋ฒˆ ๊ตฌ๊ธ€์˜ ์ฐจ์„ธ๋Œ€ AI ์ถœ์‹œ๋กœ ์˜คํ”ˆAI์™€ ์†์žก์€ ๋งˆ์ดํฌ๋กœ์†Œํ”„ํŠธ(MS), โ€˜์ธ๊ณต์ง€๋Šฅ ๋™๋งนโ€™์— ๋‚˜์„  ๋ฉ”ํƒ€ ๋“ฑ ๊ธ€๋กœ๋ฒŒ ๋น…ํ…Œํฌ ๊ธฐ์—…๋“ค์ด โ€˜3๋Œ€ ์ง„์˜โ€™์œผ๋กœ ์ดํ•ฉ์ง‘์‚ฐํ•ด ๊ฒฝ์Ÿ์„ ๊ฐ€์†ํ™”ํ•  ์ „๋ง์ด๋‹ค.

๊ตฌ๊ธ€์˜ ๋น„๋ฐ€๋ณ‘๊ธฐ โ€˜์ œ๋ฏธ๋‹ˆโ€™, GPT4ยท์ธ๊ฐ„ ๋Šฅ๋ ฅ ์ดˆ์›”

6์ผ(ํ˜„์ง€์‹œ๊ฐ„) ๊ตฌ๊ธ€์ด ์ƒ์„ฑํ˜• AI ์„ ๋‘์ฃผ์ž์ธ ์˜คํ”ˆAI GPT-4์˜ ๋Œ€ํ•ญ๋งˆ โ€˜์ œ๋ฏธ๋‹ˆ(Gemini) 1.0โ€™์„ ๊ณต๊ฐœํ–ˆ๋‹ค. GPT-4๋ฅผ ๋Šฅ๊ฐ€ํ•˜๋Š” ํ˜„์กด ์ตœ๊ณ  ์ˆ˜์ค€ ์„ฑ๋Šฅ์„ ๊ฐ–์ถ˜ AI ๋ชจ๋ธ์ด๋ผ๊ณ  ์ž๋ž‘ํ•  ๋งŒํผ ์•ผ์‹ฌ ์ฐจ๊ฒŒ ๋‚ด๋†“์€ ๊ตฌ๊ธ€์˜ ์ฐจ์„ธ๋Œ€ AI ๋ชจ๋ธ์ด๋‹ค. ์ œ๋ฏธ๋‹ˆ๋Š” ์˜คํ”ˆAI์˜ GPT์™€ ๋‹ฌ๋ฆฌ ๊ฐœ๋ฐœ ๋‹จ๊ณ„๋ถ€ํ„ฐ ์ด๋ฏธ์ง€๋ฅผ ์ธ์‹์€ ๋ฌผ๋ก , ์Œ์„ฑ์œผ๋กœ ๋งํ•˜๊ฑฐ๋‚˜ ๋“ค์„ ์ˆ˜ ์žˆ์œผ๋ฉฐ ์ฝ”๋”ฉ์„ ํ•  ์ˆ˜ ์žˆ๋Š” ๋Šฅ๋ ฅ๊นŒ์ง€ ๊ฐ–์ถ˜ โ€˜๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ AIโ€™๋กœ ๊ตฌ์ถ•๋๋‹ค. ํ…์ŠคํŠธ ๋ฐ์ดํ„ฐ๋งŒ ํ•™์Šตํ•œ AI ๋ชจ๋ธ๊ณผ ๋‹ค๋ฅธ ๋ฐฉ์‹์ด๋‹ค. ํ…์ŠคํŠธ, ์ฝ”๋“œ, ์˜ค๋””์˜ค, ์ด๋ฏธ์ง€, ๋™์˜์ƒ ๋“ฑ ๋‹ค์–‘ํ•œ ์œ ํ˜•์˜ ์ •๋ณด๋ฅผ ์ดํ•ดํ•˜๊ณ  ์ƒํ˜ธ์ž‘์šฉํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์ด ๊ฐ€์žฅ ํฐ ํŠน์ง•์ด๋‹ค.

์‹ค์ œ๋กœ ์ œ๋ฏธ๋‹ˆ ํ…Œ์ŠคํŠธ ๊ฒฐ๊ณผ๋“ค์„ ๋ณด๋ฉด, ๊ทธ์ € ์ธํ˜•์„ ๋ณด์—ฌ์ฃผ๊ธฐ๋งŒ ํ–ˆ์„ ๋ฟ์ธ๋ฐ ๊ณ ๋ฌด ์†Œ์žฌ์˜ ํŒŒ๋ž€์ƒ‰ ์˜ค๋ฆฌ ๋ชจ์–‘์ธ ๊ฑธ ๋งžํžˆ๊ฑฐ๋‚˜, ์ดˆ๋ก์ƒ‰ ์‹ค๊ณผ ๋ถ„ํ™์ƒ‰ ์‹ค์„ ๋ณด๊ณ ๋Š” ๊ณผ์ผ ๋“œ๋ž˜๊ณค ํ”„๋ฃจํŠธ(์šฉ๊ณผ)๋ฅผ ๋งŒ๋“ค์–ด ๋ณด๋Š” ๊ฑด ์–ด๋–ป๊ฒ ๋А๋ƒ๊ณ  ์ œ์•ˆํ–ˆ๋‹ค. ์ž๋™์ฐจ ๊ทธ๋ฆผ์„ ์ œ์‹œํ•˜๋ฉฐ ๋””์ž์ธ์ƒ ์†๋„์˜ ์ฐจ์ด๋ฅผ ๋ฌป์ž โ€œ์˜ค๋ฅธ์ชฝ ์ฐจ๋Ÿ‰์ด ๊ณต๊ธฐ ์ €ํ•ญ์— ๋” ์œ ๋ฆฌํ•˜๋‹คโ€๋Š” ์‹์œผ๋กœ ๋‹ตํ•˜๋Š”๊ฐ€ ํ•˜๋ฉด, ๋‘ ์žฅ์˜ ์‚ฌ์ง„์„ ๋ณด๊ณ  ์œ ์‚ฌ์„ฑ์„ ์ฐพ์•„๋‚ด๊ธฐ๋„ ํ–ˆ๋‹ค. ์ผ๋ฐ˜ ์‚ฌ์ง„์„ ํฌํ† ์ƒต๊ณผ ์ผ๋Ÿฌ์ŠคํŠธ๋ ˆ์ดํ„ฐ์— ๋งž๋Š” SVG(๋ฒกํ„ฐ ๊ทธ๋ž˜ํ”ฝ ํ˜•์‹)๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ๊ฒƒ์€ ๋ฌผ๋ก  HTML, ์ž๋ฐ”์Šคํฌ๋ฆฝํŠธ๋กœ ํ‘œํ˜„ํ•˜๋Š” ์ฝ”๋”ฉ์—๋„ ๋Šฅํ–ˆ๋‹ค.

๊ตฌ๊ธ€์— ๋”ฐ๋ฅด๋ฉด ์ œ๋ฏธ๋‹ˆ ์šธํŠธ๋ผ๋Š” 32๊ฐœ์˜ ํ•™์ˆ  ๋ฒค์น˜๋งˆํฌ(์„ฑ๋Šฅ ์ง€ํ‘œ) ์ค‘ 30๊ฐœ์—์„œ GPT-4๋ฅผ ์•ž์„ฐ๋‹ค. ํŠนํžˆ ์ˆ˜ํ•™, ๋ฌผ๋ฆฌํ•™, ์—ญ์‚ฌ, ๋ฒ•๋ฅ , ์˜ํ•™, ์œค๋ฆฌ ๋“ฑ 57๊ฐœ ๊ณผ๋ชฉ์„ ์กฐํ•ฉํ•ด ์ง€์‹, ๋ฌธ์ œ ํ•ด๊ฒฐ ๋Šฅ๋ ฅ์„ ํ…Œ์ŠคํŠธํ•˜๋Š” โ€˜MMLU(๋Œ€๊ทœ๋ชจ ๋‹ค์ค‘ ์ž‘์—… ์–ธ์–ด ์ดํ•ด)โ€™ ์˜์—ญ์—์„œ 90%์˜ ์ ์ˆ˜๋ฅผ ํš๋“, ์ตœ์ดˆ๋กœ ์ธ๊ฐ„ ์ „๋ฌธ๊ฐ€๋ฅผ ๋Šฅ๊ฐ€ํ–ˆ๋‹ค. GPT-4์˜ MMLU ์ ์ˆ˜๋Š” 86.4%์˜€๋‹ค.

์ œ๋ฏธ๋‹ˆ๋Š” ๊ตฌ๊ธ€์ด ์ž์ฒด ๊ฐœ๋ฐœํ•œ AI ์นฉ(TPU v4ยทv5e)์œผ๋กœ ํ•™์Šตํ–ˆ๋‹ค. ๊ตฌ๊ธ€์€ ์ตœ์ฒจ๋‹จ AI ๋ชจ๋ธ์„ ํ•™์Šต์‹œํ‚ค๊ธฐ ์œ„ํ•ด ์„ค๊ณ„ํ•œ ์ตœ์‹  ์นฉ(ํด๋ผ์šฐ๋“œ TPU v5p)๋„ ๊ณต๊ฐœํ•˜๋ฉฐ ์ œ๋ฏธ๋‹ˆ์˜ ํ–ฅํ›„ ๊ฐœ๋ฐœ์„ ๊ฐ€์†ํ™”ํ•  ์˜ˆ์ •์ด๋ผ๊ณ  ๋ง๋ถ™์˜€๋‹ค. ์ˆœ๋‹ค๋ฅด ํ”ผ์ฐจ์ด ๊ตฌ๊ธ€ ์ตœ๊ณ ๊ฒฝ์˜์ž(CEO)๋Š” โ€œ์ฒซ ๋ฒˆ์งธ ๋ฒ„์ „์ธ ์ œ๋ฏธ๋‹ˆ 1.0์€ ๊ตฌ๊ธ€ ๋”ฅ๋งˆ์ธ๋“œ์˜ ๋น„์ „์„ ์ฒ˜์Œ์œผ๋กœ ์‹คํ˜„ํ–ˆ๋‹คโ€๋ฉฐ โ€œ์•ž์œผ๋กœ ํŽผ์ณ์งˆ ์ผ๊ณผ ์ œ๋ฏธ๋‹ˆ๊ฐ€ ์ „ ์„ธ๊ณ„ ์‚ฌ๋žŒ๋“ค์—๊ฒŒ ์—ด์–ด์ค„ ๊ธฐํšŒ์— ๋Œ€ํ•œ ๊ธฐ๋Œ€๊ฐ€ ํฌ๋‹คโ€๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค.

๊ฐ€์žฅ ๋ฒ”์šฉ์œผ๋กœ ์“ฐ์ด๋Š” '์ œ๋ฏธ๋‹ˆ ํ”„๋กœ'๋Š” ์ด๋‚ ๋ถ€ํ„ฐ ๊ตฌ๊ธ€์˜ AI ์ฑ—๋ด‡ ์„œ๋น„์Šค์ธ ๋ฐ”๋“œ์— ํƒ‘์žฌ๋œ๋‹ค. ๋ฐ”๋“œ์—๋Š” ์ง€๊ธˆ๊นŒ์ง€ ํŒœ2(PaLM2)๊ฐ€ ํƒ‘์žฌ๋ผ ์žˆ์—ˆ๋‹ค. ์ œ๋ฏธ๋‹ˆ ํ”„๋กœ๊ฐ€ ์ ์šฉ๋œ ๋ฐ”๋“œ๋Š” 170๊ฐœ ์ด์ƒ ๊ตญ๊ฐ€ ๋ฐ ์ง€์—ญ์—์„œ ์˜์–ด๋กœ ์ œ๊ณต๋˜๋ฉฐ, ํ–ฅํ›„ ์„œ๋น„์Šค ํ™•์žฅ ๋ฐ ์ƒˆ๋กœ์šด ์ง€์—ญ๊ณผ ์–ธ์–ด๋„ ์ง€์›๋œ๋‹ค. ๊ฐ€์žฅ ํฌ๊ณ  ๊ณ ์„ฑ๋Šฅ์ธ '์ œ๋ฏธ๋‹ˆ ์šธํŠธ๋ผ'๋Š” ๋‚ด๋…„ ์ดˆ '๋ฐ”๋“œ ์–ด๋“œ๋ฐด์ŠคํŠธ'๋ผ๋Š” ์ด๋ฆ„์œผ๋กœ ๋ฐ”๋“œ์— ์žฅ์ฐฉ๋œ๋‹ค. '์ œ๋ฏธ๋‹ˆ ๋‚˜๋…ธ'๋Š” ํด๋ผ์šฐ๋“œ ์—ฐ๊ฒฐ ์—†์ด ๋””๋ฐ”์ด์Šค ์ž์ฒด์—์„œ ๊ฐ€๋ฒผ์šด AI๋ฅผ ์ฆ‰๊ฐ์ ์œผ๋กœ ํ™œ์šฉํ•˜๋Š” ์˜จ๋””๋ฐ”์ด์Šค ํ˜•ํƒœ๋กœ ์ ‘๋ชฉ๋˜๋ฉฐ, ๊ตฌ๊ธ€์ด ์ง€๋‚œ 10์›” ๊ณต๊ฐœํ•œ ์Šค๋งˆํŠธํฐ์ธ 'ํ”ฝ์…€8 ํ”„๋กœ'์— ํƒ‘์žฌ๋  ์˜ˆ์ •์ด๋‹ค.

์‚ฌ์‹ค ์ง€๋‚œํ•ด 11์›” ์˜คํ”ˆAI๊ฐ€ ์ฑ—GPT๋ฅผ ์ฒ˜์Œ ๊ณต๊ฐœํ–ˆ์„ ๋•Œ๋งŒ ํ•ด๋„ ๊ตฌ๊ธ€์€ ๋ฌด๋ฐฉ๋น„ ์ƒํƒœ์˜€๋‹ค. MS๊ฐ€ ์˜คํ”ˆAI์— ๊ฑฐ์•ก์„ ํˆฌ์žํ•˜๋ฉด์„œ๋ถ€ํ„ฐ๋Š” ์ˆ˜๋…„๊ฐ„ ์ง€๋ฐฐํ•ด ์™”๋˜ ๊ฒ€์ƒ‰ ์‹œ์žฅ์˜ ์ฃผ๋„๊ถŒ๋งˆ์ € ๋บ๊ธธ ํŒ์ด์—ˆ๋‹ค. ์ด์— ๊ตฌ๊ธ€์€ ์ง€๋‚œ 3์›” ์ฆ‰๊ฐ ์ž์ฒด ์ฑ—๋ด‡์ธ ๋ฐ”๋“œ๋ฅผ ์ถœ์‹œํ–ˆ๊ณ , 4์›”์—๋Š” AI ์กฐ์ง์ธ ๊ตฌ๊ธ€๋ธŒ๋ ˆ์ธ๊ณผ ๋”ฅ๋งˆ์ธ๋“œ๋ฅผ โ€˜๊ตฌ๊ธ€ ๋”ฅ๋งˆ์ธ๋“œโ€™๋กœ ํ†ตํ•ฉํ•œ ๋’ค 2,000๋ช… ์ด์ƒ์˜ AI ์—ฐ๊ตฌ์›๊ณผ ์—”์ง€๋‹ˆ์–ด๋ฅผ ๋Œ์–ด๋ชจ์•„ ์ž์›์„ ์ง‘์ค‘ ํˆฌ์ž…ํ–ˆ๋‹ค. ์ดํ›„ 9๊ฐœ์›”์—ฌ ๋งŒ์— GPT-4๋ฅผ ๋Šฅ๊ฐ€ํ•˜๋Š” ๊ธฐ๋Šฅ์„ ๊ฐ–์ถ˜ AI ๋ชจ๋ธ ์ œ๋ฏธ๋‹ˆ๋ฅผ ์ถœ์‹œํ•œ ๊ฒƒ์ด๋‹ค.

231208_XAI_Grok
X.AI์˜ ์ฑ—๋ด‡ ๊ทธ๋ก/์‚ฌ์ง„ =X.AI

์ดˆ๊ฑฐ๋Œ€ AI ํŒจ๊ถŒ ์ „์Ÿ 3ํŒŒ์ „

์•ž์œผ๋กœ ์ดˆ๊ฑฐ๋Œ€ AI ๊ธฐ์ˆ ์„ ์„ ์ ํ•˜๊ธฐ ์œ„ํ•œ ๊ฐ์ถ•์ „์€ ๋”์šฑ ๊ฒฉํ™”ํ•  ์ „๋ง์ด๋‹ค. ํ˜„์žฌ AI ์‹œ์žฅ์—์„œ๋Š” ์ง€๋‚œ๋‹ฌ ์˜คํ”ˆAI๊ฐ€ ์ƒ˜ ์•ŒํŠธ๋งŒ CEO ์ถ•์ถœ ์‚ฌํƒœ๋กœ ํ˜ผ๋ž€์— ๋น ์ง„ ํ‹ˆ์„ ํƒ€ ํ›„๋ฐœ์ฃผ์ž๋“ค์˜ ์ถ”๊ฒฉ์ด ๊ฑฐ์„ธ์ง€๊ณ  ์žˆ๋Š” ๋ชจ์–‘์ƒˆ๋‹ค. ๊ตฌ๊ธ€์ด ๋…์ž ๋…ธ์„ ์„ ๊ฑท๊ณ  MS๊ฐ€ ์˜คํ”ˆAI์™€ ์—ฐ๋Œ€๋ฅผ ํ–ˆ๋‹ค๋ฉด, ํ›„๋ฐœ์ฃผ์ž์ธ ๋ฉ”ํƒ€์™€ IBM์€ 50๊ฐœ์‚ฌ์™€ ํ•จ๊ป˜ 'AI ๋™๋งน(AI Alliance)โ€™์„ ๊ฒฐ์„ฑํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ํŒจ๊ถŒ์— ๋„์ „์žฅ์„ ๋‚ด๋ฐ€์—ˆ๋‹ค. ๋™๋งน์—๋Š” ์‚ฐํ•™์—ฐ์ด ๊ณ ๋ฃจ ์ด๋ฆ„์„ ์˜ฌ๋ ธ๋‹ค. ์šฐ์„  ์ธํ…”, AMD, ์˜ค๋ผํด ๋“ฑ ๋ฏธ๊ตญ์˜ ๋ฐ˜๋„์ฒดยทIT ๋Œ€๊ธฐ์—…์„ ๋น„๋กฏํ•ด ์Šคํƒœ๋นŒ๋ฆฌํ‹ฐAI, ํ—ˆ๊น…ํŽ˜์ด์Šค ๋“ฑ ์ƒ์„ฑ AI ์Šคํƒ€ํŠธ์—…๋“ค๋„ ์ฐธ์—ฌํ•œ๋‹ค. ์˜ˆ์ผ๋Œ€, ์ฝ”๋„ฌ๋Œ€, ๋„์ฟ„๋Œ€ ๋“ฑ ์œ ์ˆ˜์˜ ๋Œ€ํ•™๊ณผ ํ•ญ๊ณต์šฐ์ฃผ๊ตญ(NASA), ๊ตญ๋ฆฝ๊ณผํ•™์žฌ๋‹จ(NSF) ๋“ฑ ๋ฏธ๊ตญ ์ •๋ถ€๊ธฐ๊ด€๋“ค๋„ ๋™์ฐธํ–ˆ๋‹ค.

์ด๋“ค์€ ๊ธฐ์ˆ ์„ ๋ฌด๋ฃŒ๋กœ ๊ณต์œ ํ•˜๋Š” ์˜คํ”ˆ์†Œ์Šค๋ฅผ ๋ฟŒ๋ฆฌ์— ๋‘๊ณ  โ€˜๊ฐœ๋ฐฉํ˜• ํ˜์‹ โ€™์— ๋‚˜์„ค ๊ณ„ํš์ด๋‹ค. ๋‹ค๋ฆฌ์˜ค ๊ธธ IBM ์ˆ˜์„๋ถ€์‚ฌ์žฅ์€ โ€œ์ง€๋‚œ 1๋…„๊ฐ„ AI์— ๋Œ€ํ•œ ๋…ผ์˜๋Š” ์ƒํƒœ๊ณ„ ๋‹ค์–‘์„ฑ์„ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•ด ๋ถˆ๋งŒ์กฑ์Šค๋Ÿฌ์› ๋‹คโ€๊ณ  ํ–ˆ๋‹ค. ์ด ๊ฐ™์€ ์ด์œ ๋กœ ์˜ฌํ•ด 8์›”๋ถ€ํ„ฐ ์˜คํ”ˆAI ๋งŒํผ ์ฃผ๋ชฉ ๋ฐ›์ง€๋Š” ๋ชปํ–ˆ๋˜ ๊ธฐ์—…๋“ค์„ ๋ชจ์•„, ๋™๋งน์„ ๊ฒฐ์„ฑํ•˜๊ฒŒ ๋๋‹ค๋Š” ์„ค๋ช…์ด๋‹ค. ๋™๋งน์€ ์˜คํ”ˆ์†Œ์Šค ํ™•์‚ฐ์„ ์œ„ํ•ด โ–ณAI ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ‰๊ฐ€ํ•˜๋Š” ๊ณตํ†ต ํ”„๋ ˆ์ž„์›Œํฌ ๊ตฌ์ถ• โ–ณAI ์—ฐ๊ตฌ์ž๊ธˆ ๋งˆ๋ จ โ–ณ์˜คํ”ˆ์†Œ์Šค ๋ชจ๋ธ์— ๋Œ€ํ•œ ํ˜‘์—…์„ ์ถ”์ง„ํ•˜๊ธฐ๋กœ ํ–ˆ๋‹ค. AI ๊ฒฝ์Ÿ์ด ๊ฒฉํ™”ํ•˜๋Š” ์ด์œ ๋Š” ๋””์ง€ํ„ธ ์„ธ๊ณ„์˜ ํŒจ๊ถŒ์ด AI์— ๋‹ฌ๋ ค ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ํฌ์ถ˜๋น„์ฆˆ๋‹ˆ์Šค์ธ์‚ฌ์ดํŠธ์— ๋”ฐ๋ฅด๋ฉด ์ „ ์„ธ๊ณ„ ์ƒ์„ฑํ˜• AI ์‹œ์žฅ ๊ทœ๋ชจ๋Š” 2023๋…„ 438์–ต ๋‹ฌ๋Ÿฌ(์•ฝ 57์กฐ์›)์—์„œ 2030๋…„ 6,679์–ต ๋‹ฌ๋Ÿฌ(์•ฝ 876์กฐ์›)๋กœ ์—ฐํ‰๊ท  47%์”ฉ ํญ์ฆํ•  ์ „๋ง์ด๋‹ค.

์ดˆ๊ฑฐ๋Œ€ AI๋ฅผ ๋‘˜๋Ÿฌ์‹ผ ์ „์Ÿ์€ ๋น…ํ…Œํฌ 3๋Œ€ ์ง„์˜์—๋งŒ ๊ตญํ•œ๋œ ๊ฒƒ์€ ์•„๋‹ˆ๋‹ค. ์ผ๋ก  ๋จธ์Šคํฌ ํ…Œ์Šฌ๋ผ CEO๊ฐ€ ์ด๋„๋Š” AI ์Šคํƒ€ํŠธ์—… X.AI๋Š” 5์ผ(ํ˜„์ง€์‹œ๊ฐ„) ๋ฏธ๊ตญ ๊ทœ์ œ ๋‹น๊ตญ์ธ ์ฆ๊ถŒ๊ฑฐ๋ž˜์œ„์›ํšŒ(SEC)์— ์ตœ๋Œ€ 10์–ต ๋‹ฌ๋Ÿฌ(์•ฝ 1์กฐ3,000์–ต์›) ๊ทœ๋ชจ์˜ ์‹ ๊ทœ ์ž๊ธˆ ์กฐ๋‹ฌ์„ ์ถ”์ง„ ์ค‘์ด๋ผ๊ณ  ๊ณต์‹œํ–ˆ๋‹ค. SEC์— ์ œ์ถœํ•œ ์„œ๋ฅ˜์— ๋”ฐ๋ฅด๋ฉด X.AI๋Š” ์ด๋ฏธ 4๋ช…์˜ ํˆฌ์ž์ž๋กœ๋ถ€ํ„ฐ 1์–ต3,470๋งŒ ๋‹ฌ๋Ÿฌ(์•ฝ 1,761์–ต์›)์˜ ์ž๊ธˆ์„ ๋ชจ์ง‘ํ–ˆ๋‹ค. ์˜คํ”ˆAI๋ฅผ ๊ณต๋™ ์ฐฝ์—…ํ•œ ๋ฐ” ์žˆ๋Š” ๋จธ์Šคํฌ๋Š” ์˜ฌํ•ด 7์›” ๋ณ„๋„ AI ๊ธฐ์—…์„ ์„ค๋ฆฝํ•˜๊ณ  ์†Œ์…œ๋ฏธ๋””์–ด ์—‘์Šค(X)์—์„œ ์„œ๋น„์Šค๋˜๋Š” ์ฑ—๋ด‡ '๊ทธ๋ก(Grok)'์„ ๊ณต๊ฐœํ•œ ์ƒํƒœ๋‹ค. ์•„๋งˆ์กด์›น์„œ๋น„์Šค(AWS) ์—ญ์‹œ ์ง€๋‚œ๋‹ฌ ํ…์ŠคํŠธ๋ฅผ ํ†ตํ•œ ์˜์‚ฌ์†Œํ†ต์œผ๋กœ ๋ฌธ์„œ ์š”์•ฝ๊ณผ ์ž๋ฃŒ ์ƒ์„ฑ, ์ฝ”๋“œ ์ž‘์„ฑ ์—…๋ฌด๋ฅผ ๋„์™€์ฃผ๋Š” ๊ธฐ์—…์šฉ ์ƒ์„ฑํ˜• AI ์ฑ—๋ด‡ '์•„๋งˆ์กดQ'๋ฅผ ์ „๊ฒฉ ๊ณต๊ฐœํ–ˆ๋‹ค. ๊ตฌ๊ธ€ ํด๋ผ์šฐ๋“œ, MS ์• ์ € ๊ฐ™์€ ํด๋ผ์šฐ๋“œ ๋ถ„์•ผ ๊ฒฝ์Ÿ์‚ฌ๊ฐ€ ์ž‡๋‹ฌ์•„ ์ƒ์„ฑํ˜• AI๋ฅผ ํƒ‘์žฌํ•˜์ž ๋ฐ˜๊ฒฉ์— ๋‚˜์„  ๊ฒƒ์ด๋‹ค.

Picture

Member for

8 months 2 weeks
Real name
์ž„์„ ์ฃผ
Position
๊ธฐ์ž
Bio
[email protected]
๋ฏธ๋””์–ด์˜ ์˜ํ–ฅ๋ ฅ์„ ๋ฌด๊ฒ๊ฒŒ ์ธ์ง€ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์˜ˆ๋ฆฌํ•œ ์‹œ๊ฐ๊ณผ ๋ถ„์„๋ ฅ์„ ๋ฐ”ํƒ•์œผ๋กœ ๊ณต์ •ํ•˜๊ณ  ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ์ •๋ณด๋งŒ์„ ์ „๋‹ฌํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.

๊ด€๋ จ๊ธฐ์‚ฌ

Previous Next

[ํ•ด์™ธ DS] 'ํ™•์‚ฐ ๋ชจ๋ธ', ํšจ์œจ์ ์ธ ๋ฌผ๊ฑด ๋ฐฐ์น˜ ๊ฐ€๋Šฅ์ผ€ ํ•ด

[ํ•ด์™ธ DS] 'ํ™•์‚ฐ ๋ชจ๋ธ', ํšจ์œจ์ ์ธ ๋ฌผ๊ฑด ๋ฐฐ์น˜ ๊ฐ€๋Šฅ์ผ€ ํ•ด
Picture

Member for

8 months 2 weeks
Real name
๊น€๊ด‘์žฌ
Position
์—ฐ๊ตฌ์›
Bio
[email protected]
๊ท ํ˜• ์žกํžŒ ์‹œ๊ฐ์œผ๋กœ ์ธ๊ณต์ง€๋Šฅ ์†Œ์‹์„ ์ „๋‹ฌํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.

์ˆ˜์ •

ํ™•์‚ฐ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•ด ๋กœ๋ด‡์ด ์ง์„ ์‹ธ๋Š” ๋ฐฉ๋ฒ•์„ ํ•™์Šต
๊ธฐ์กด ๋ฐฉ์‹๋ณด๋‹ค ๋น ๋ฅด๊ณ  ํšจ์œจ์ ์œผ๋กœ ์ง์„ ์‹ธ๋Š” ๋ฐ ์„ฑ๊ณต
์—ฌํ–‰๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์–ด

[ํ•ด์™ธDS]๋Š” ํ•ด์™ธ ์œ ์ˆ˜์˜ ๋ฐ์ดํ„ฐ ์‚ฌ์ด์–ธ์Šค ์ „๋ฌธ์ง€๋“ค์—์„œ ์ „ํ•˜๋Š” ์—…๊ณ„ ์ „๋ฌธ๊ฐ€๋“ค์˜ ์˜๊ฒฌ์„ ๋‹ด์•˜์Šต๋‹ˆ๋‹ค. ์ €ํฌ ๋ฐ์ดํ„ฐ ์‚ฌ์ด์–ธ์Šค ๊ฒฝ์˜ ์—ฐ๊ตฌ์†Œ (GIAI R&D Korea)์—์„œ ์˜์–ด ์›๋ฌธ ๊ณต๊ฐœ ์กฐ๊ฑด์œผ๋กœ ์ฝ˜ํ…์ธ  ์ œํœด๊ฐ€ ์ง„ํ–‰ ์ค‘์ž…๋‹ˆ๋‹ค.


ai_teaches_robots_the_best_way_to_pack_a_car
์‚ฌ์ง„=Scientific American

๊ทœ์น™ ๊ธฐ๋ฐ˜์—์„œ 'ํ•™์Šต ๊ธฐ๋ฐ˜'์œผ๋กœ ํ•œ ๋‹จ๊ณ„ ๋„์•ฝ

์ž๋™์ฐจ ์—ฌํ–‰์„ ์œ„ํ•ด ์ง์„ ์‹ธ๋Š” ๊ฒƒ์€ ๊ฐ„๋‹จํ•œ ์ž‘์—…์ฒ˜๋Ÿผ ๋ณด์ผ ์ˆ˜ ์žˆ์ง€๋งŒ, ๋กœ๋ด‡์ด ํ•™์Šตํ•˜๊ธฐ์—๋Š” ๊ฒฐ์ฝ” ์‰ฌ์šด ์ผ์ด ์•„๋‹ˆ๋‹ค. ๋งค์‚ฌ์ถ”์„ธ์ธ ๊ณต๊ณผ๋Œ€ํ•™๊ณผ ์Šคํƒ ํผ๋“œ๋Œ€ํ•™์˜ ์—ฐ๊ตฌํŒ€์€ 'ํ™•์‚ฐ ๋ชจ๋ธ(Diffusion Model)'์ด๋ผ๋Š” ์ƒ์„ฑํ˜• AI์˜ ํ•œ ํ˜•ํƒœ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋กœ๋ด‡์ด ๋ฌด๊ฑฐ์šด ๋ฌผ๊ฑด์ด ๊ฐ€๋ฒผ์šด ๋ฌผ๊ฑด์„ ๋ถ€์ˆ˜์ง€๋Š” ์•Š๋Š”์ง€, ์ผ๋ถ€ ๋ฌผ๊ฑด ์‚ฌ์ด์— ์ผ์ •ํ•œ ๊ณต๊ฐ„์ด ์žˆ๋Š”์ง€, ๋กœ๋ด‡์˜ ํŒ”์ด ์‹ค์ˆ˜๋กœ ์ปจํ…Œ์ด๋„ˆ์— ๋ถ€๋”ชํ˜€ ์†์ƒ๋˜์ง€ ์•Š๋Š”์ง€ ๋“ฑ ๋‹ค์–‘ํ•œ ์ œ์•ฝ ์กฐ๊ฑด์„ ์ค€์ˆ˜ํ•˜๋ฉด์„œ ์ œํ•œ๋œ ๊ณต๊ฐ„์— ๋ฌผ๊ฑด์„ ํšจ์œจ์ ์œผ๋กœ ๋ฐฐ์น˜ํ•˜๋„๋ก ๋ฐ์ดํ„ฐ๋ฅผ ํ•™์Šตํ–ˆ๋‹ค. ์—ฐ๊ตฌ์ง„์€ ํ™•์‚ฐ ๋ชจ๋ธ์„ ํ†ตํ•ด ๋กœ๋ด‡์ด ๊ณผ๊ฑฐ์— ์‚ฌ์šฉํ–ˆ๋˜ ํ›ˆ๋ จ ๋ฐฉ๋ฒ•๋ณด๋‹ค ๋” ๋น ๋ฅด๊ฒŒ ๋ชฉํ‘œ๋ฅผ ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค๊ณ  ์ „ํ–ˆ๋‹ค.

๋…ผ๋ฌธ์˜ ์ฃผ ์ €์ž์ธ ๋งค์‚ฌ์ถ”์„ธ์ธ ๊ณต๊ณผ๋Œ€ํ•™๊ต ๋ฐ•์‚ฌ๊ณผ์ • ํ•™์ƒ์ธ ์ฃผํ‹ฐ์•ˆ ์–‘(Zhutian Yang)์€ "ํ•™์Šต ๊ธฐ๋ฐ˜์€ ๊ธฐ์กด ๋ฐฉ์‹์— ๋น„ํ•ด ์ œ์•ฝ ์กฐ๊ฑด์„ ๋” ๋นจ๋ฆฌ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ ํ•™์Šต ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ–ˆ๋‹ค"๋ผ๊ณ  ๋งํ–ˆ๋‹ค. 'ํ•™์Šต ๊ธฐ๋ฐ˜' ์ ‘๊ทผ ๋ฐฉ์‹์€ AI ํ”„๋กœ๊ทธ๋žจ์ด ํ•™์Šต ๋ฐ์ดํ„ฐ์™€ ์›ํ•˜๋Š” ๊ฒฐ๊ณผ ์‚ฌ์ด์˜ ํŒจํ„ด์„ ์‹๋ณ„ํ•˜์—ฌ ์ž์œจ์ ์œผ๋กœ ํ•™์Šตํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ด๋Š” ์—„๊ฒฉํ•˜๊ฒŒ ์ง€์ •๋œ ๊ทœ์ • ๋‚ด์—์„œ๋งŒ ์ž‘๋™ํ•ด์•ผ ํ–ˆ๋˜ ์ด์ „์˜ '๊ทœ์น™ ๊ธฐ๋ฐ˜' ํ”„๋กœ๊ทธ๋žจ๊ณผ๋Š” ํ™•์—ฐํžˆ ๋‹ค๋ฅด๋‹ค. "ํ™•์‚ฐ ๋ชจ๋ธ์€ ๋‹ค์–‘ํ•œ ํ•ด๊ฒฐ์ฑ…์„ ์ƒ˜ํ”Œ๋งํ•˜๊ณ  ๋ชจ๋“  ์ œ์•ฝ ์กฐ๊ฑด์„ ๊ณต๋™์œผ๋กœ ๋งŒ์กฑ์‹œํ‚ค๋Š” ๋ฐ ๋งค์šฐ ํšจ์œจ์ ์ธ ๋ฐฉ๋ฒ•์ด๋‹ค"๋ผ๊ณ  ์–‘์€ ๊ฐ•์กฐํ–ˆ๋‹ค.

robot_packing_domains
๋„ค ๊ฐ€์ง€ ์œ ํ˜•์˜ ์ž‘์—…์ด ์žˆ๋‹ค. ๊ธฐํ•˜ํ•™์ , ๋ฌผ๋ฆฌ์ , ์งˆ์  ์ œ์•ฝ์ด ์žˆ์œผ๋ฉฐ, ์™ธ์ชฝ๋ถ€ํ„ฐ ์˜ค๋ฅธ์ชฝ๊นŒ์ง€ ์ˆœ์„œ๋Œ€๋กœ (1) ์‚ผ๊ฐํ˜• ํŒจํ‚น ์ž‘์—…, (2) ์ •์„ฑ์  ์ œ์•ฝ ์กฐ๊ฑด์ด ์žˆ๋Š” ๊ณ ๋ฐ€๋„ 2D ํŒจํ‚น ์ž‘์—…, (3) 3D ๊ฐ์ฒด ์Šคํƒœํ‚น ์ž‘์—…(ํ™”์‚ดํ‘œ๋Š” ์ง€์ง€ ๊ด€๊ณ„๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค), ๊ทธ๋ฆฌ๊ณ  ๋งˆ์ง€๋ง‰์œผ๋กœ (4) 3D ๋กœ๋ด‡์„ ์‚ฌ์šฉํ•œ 3D ๊ฐ์ฒด ํŒจํ‚น ์ž‘์—…์ด ์žˆ๋‹ค/์ถœ์ฒ˜=Compositional Diffusion-Based
Continuous Constraint Solvers

ํ™•์‚ฐ ๋ชจ๋ธ ์ˆœ์ฐจ์  ์ž‘์—… ํ•œ๊ณ„ ๊ทน๋ณตํ•ด, "์ด์ œ๋Š” ๋™์‹œ ์ž‘์—…"

์ด๋ฒˆ ์—ฐ๊ตฌ์— ์ฐธ์—ฌํ•˜์ง€๋Š” ์•Š์•˜์ง€๋งŒ ๋น„์Šทํ•œ ์—ฐ๊ตฌ ๋ถ„์•ผ์—์„œ ์ผํ•˜๊ณ  ์žˆ๋Š” ์กฐ์ง€์•„๊ณต๊ณผ๋Œ€ํ•™๊ต์˜ AI ๋กœ๋ด‡๊ณตํ•™ ์กฐ๊ต์ˆ˜ ์•„๋‹ˆ๋ฉ”์‰ฌ ๊ฐ€๊ทธ(Animesh Garg)๋Š” "์ž์œจ ํฌ์žฅ ๊ณต์ •์€ ์ค„๊ณง ์–ด๋ ค์šด ๋ฌธ์ œ์˜€๋‹ค"๋ผ๊ณ  ์–ธ๊ธ‰ํ–ˆ๋‹ค. "๋จธ์‹ ๋Ÿฌ๋‹์ด ์—†์œผ๋ฉด ๊ณ„์‚ฐ ์ง‘์•ฝ์ ์ธ ์˜จ๋ผ์ธ 3D ํŒจํ‚น ํ”„๋กœ๊ทธ๋žจ์ด ํ•„์š”ํ•˜๋‹ค. ํ•ด๋‹น ํ”„๋กœ๊ทธ๋žจ์˜ ์ฝ”๋”ฉ๋œ ์ˆ˜์ค€์— ๋”ฐ๋ผ ํ•ด๊ฒฐํ•  ์ˆ˜ ์—†๋Š” ์ƒํ™ฉ์ด ๋ฐœ์ƒํ•  ์ˆ˜๋„ ์žˆ๋Š” ๊ทœ์น™ ๊ธฐ๋ฐ˜ ๊ธฐ์ˆ ์„ ์‚ฌ์šฉํ•  ์ˆ˜๋ฐ–์— ์—†์—ˆ๋‹ค"๋ผ๊ณ  ๋ง๋ถ™์˜€๋‹ค.

์ด์ „์—๋Š” ์•ž์„œ ์–ธ๊ธ‰ํ•œ ์ œ์•ฝ ์กฐ๊ฑด ๋‚ด์—์„œ ๋ฐฐ์น˜ ์ตœ์ ํ™”๋ฅผ ๋‹ฌ์„ฑํ•˜๋ ค๋ฉด ์ฐจ๋ก€๋Œ€๋กœ ์ž‘์—…ํ•ด์•ผ ํ–ˆ๋‹ค. ๊ฐ€๋Šฅํ•œ ๋ฐฐ์น˜ ๊ตฌ์„ฑ์„ ๊ฐœ๋ฐœํ•˜๊ณ  ํ•œ ๋ฒˆ์— ํ•˜๋‚˜์˜ ์ œ์•ฝ ์กฐ๊ฑด์— ๋Œ€ํ•ด ๊ฐ๊ฐ ํ…Œ์ŠคํŠธํ•œ ๋‹ค์Œ, ๋‹ค๋ฅธ ์ œ์•ฝ ์กฐ๊ฑด๊ณผ์˜ ์ถฉ๋Œ ์—ฌ๋ถ€๋ฅผ ํ™•์ธํ•ด์•ผ ํ–ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์‹œํ–‰์ฐฉ์˜ค๋ฅผ ๊ฑฐ์น˜๋Š” ๋ฐฉ์‹์€ ํŠนํžˆ ํŒจํ‚นํ•  ํ•ญ๋ชฉ์ด ๋งŽ์•„ ํ…Œ์ŠคํŠธํ•ด์•ผ ํ•  ์ž‘์—…์ด ๋Š˜์–ด๋‚  ๋•Œ ๊ณผ๋ถ€ํ•˜๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค. ๋ฐ˜๋ฉด์— ์ƒˆ๋กœ์šด ์—ฐ๊ตฌ์—์„œ๋Š” ํ™•์‚ฐ ๋ชจ๋ธ์„ ํ†ตํ•ด ๋กœ๋ด‡์ด ๊ฐœ๋ณ„ ์ œ์•ฝ ์กฐ๊ฑด์„ ์œ„ํ•œ ์—ฌ๋Ÿฌ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ๋™์‹œ์— ํƒ์ƒ‰ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋˜์—ˆ๋‹ค. ๊ฐœ๋ณ„ ๋ชจ๋ธ์„ ํ†ตํ•ด ๋กœ๋ด‡์€ ๋ฌธ์ œ๋ฅผ ๋‹ค๊ฐ๋„์—์„œ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ์—ˆ๊ณ , ๊ฑฐ์˜ ์ฆ‰๊ฐ์ ์œผ๋กœ ๋ชจ๋“  ์ œ์•ฝ ์กฐ๊ฑด์„ ํ•œ๊บผ๋ฒˆ์— ๊ณ ๋ คํ–ˆ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ์ด์ „ ๊ธฐ์ˆ ๋ณด๋‹ค ํ›จ์”ฌ ๋” ํšจ๊ณผ์ ์ธ ๋ฐฐ์น˜ ๊ตฌ์„ฑ์„ ํšจ์œจ์ ์œผ๋กœ ์ฐพ์„ ์ˆ˜ ์žˆ๊ฒŒ ๋˜์—ˆ๋‹ค. ๋˜ํ•œ ์ด ์—ฐ๊ตฌ์˜ ํ™•์‚ฐ ๋ชจ๋ธ์€ ํ•™์Šตํ•œ ์ •๋ณด ์ด์ƒ์œผ๋กœ ๋” ๋งŽ์€ ์ˆ˜์˜ ํ’ˆ๋ชฉ์— ์ ์šฉ๋˜๋Š” ๋‚ฏ์„  ์ œ์•ฝ ์กฐ๊ฑด ์กฐํ•ฉ์„ ํ•ด๊ฒฐํ•˜๊ธฐ๋„ ํ–ˆ๋‹ค.

์ธ๊ฐ„์˜ ์„ ์ž…๊ฒฌ ๋›ฐ์–ด๋„˜๊ณ  ํ™•์žฅ ๋ถ„์•ผ๋„ ๋„“์–ด

์—ฐ๊ตฌํŒ€์€ ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ๋Œ€๋ถ€๋ถ„ ์‚ฌ๋žŒ์˜ ์ง๊ด€๊ณผ ์–ด๋–ป๊ฒŒ ์ผ์น˜ํ•˜๋Š”์ง€, ๋˜๋Š” ๋ฌด์—‡์ด ๋‹ค๋ฅธ์ง€๋„ ์‚ดํŽด๋ดค๋‹ค. ์ธ๊ฐ„์€ ๊ฐ€์žฅ์ž๋ฆฌ์— ๋จผ์ € ๋ฌผ๊ฑด์„ ๋ฐฐ์น˜ํ•˜๋Š” ์Šต๊ด€์ด ์žˆ๋Š”๋ฐ, ๋ฌผ๊ฑด์ด ๋งŽ์œผ๋ฉด ํ•ญ์ƒ ์™ผ์ชฝ ์•„๋ž˜๋ถ€ํ„ฐ ๋ฌผ๊ฑด์„ ๋†“๋Š”๋‹ค. ๋ฌผ๊ฑด์„ ์Œ“์„ ๋•Œ๋Š” ํ•œ์ชฝ์—์„œ ๋‹ค๋ฅธ ์ชฝ๊นŒ์ง€ ์Œ“์ง€ ์•Š๊ณ  ์ธต์ธต์ด ๊ณ ๋ฅด๊ฒŒ ์Œ“์•„ ์˜ฌ๋ฆฌ๋Š” ๊ฒฝํ–ฅ์ด ์žˆ์—ˆ๋‹ค. ์ธ๊ฐ„์˜ ๊ด€์ ์—์„œ ๋ณด๋ฉด ํ•ฉ๋ฆฌ์ ์œผ๋กœ ๋ณด์ผ ์ˆ˜ ์žˆ์ง€๋งŒ, ์ธ๊ฐ„์˜ ์„ ์ž…๊ฒฌ์ด ์—†๋Š” ํ•™์Šต ๊ธฐ๋ฐ˜ ๋กœ๋ด‡์€ ๋‹ค์–‘ํ•œ ํ•ด๊ฒฐ์ฑ…์„ ์ž์œ ๋กญ๊ฒŒ ๋ฐœ๊ฒฌํ•  ์ˆ˜ ์žˆ๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. ์ธ๊ฐ„๋ณด๋‹ค ๋” ๋น ๋ฅด๊ณ  ํšจ์œจ์ ์œผ๋กœ ์ง์„ ๊พธ๋ฆด ์ˆ˜ ์žˆ๋Š” ๋Šฅ๋ ฅ์„ ๊ฐ–์ถ˜ ๋กœ๋ด‡์€ ์ž๋™์ฐจ ์—ฌํ–‰์„ ์œ„ํ•œ ์ง์นธ ์ •๋ฆฌ ์™ธ์—๋„ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ๋ฐฐ์†ก์—…์ฒด์—์„œ ์„œ๋กœ ๋‹ค๋ฅธ ๋ฌผํ’ˆ์„ ํ•˜๋‚˜์˜ ์ปจํ…Œ์ด๋„ˆ์— ํฌ์žฅํ•˜๊ฑฐ๋‚˜ ์ œ์•ฝํšŒ์‚ฌ์—์„œ ๋‹ค์–‘ํ•œ ์•ฝํ’ˆ์„ ๋ณ‘์›์œผ๋กœ ๋Œ€๋Ÿ‰ ๋ฐฐ์†กํ•˜๋Š” ์ž‘์—…์— ์ ํ•ฉํ•˜๋‹ค.

ํ˜„์žฌ ์—ฐ๊ตฌํŒ€์€ ๋กœ๋ด‡์ด ๋ถ„์‚ฐํ˜• ์˜์‚ฌ ๊ฒฐ์ •์„ ๋‚ด๋ฆด ์ˆ˜ ์žˆ๊ฒŒ ํ•˜๊ธฐ ์œ„ํ•ด ๋…ธ๋ ฅํ•˜๊ณ  ์žˆ๋‹ค. ์—ฌ๊ธฐ์—๋Š” ๋กœ๋ด‡์—๊ฒŒ ์ œ์•ฝ ์กฐ๊ฑด ๋‚ด์—์„œ ์ง์„ ์‹ธ๋„๋ก ๊ฐ€๋ฅด์น˜๋Š” ๊ฒƒ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ์ง€์†์ ์œผ๋กœ ๋ณ€ํ™”ํ•˜๋Š” ๋ณ€์ˆ˜(์˜ˆ: ๋ฐฉ์„ ์ด๋™ํ•˜๋ฉด์„œ ๋™์‹œ์— ๋ฌผ๊ฑด์„ ํฌ์žฅํ•ด์•ผ ํ•  ๋•Œ)์—์„œ๋„ ๊ทธ๋ ‡๊ฒŒ ํ•˜๋„๋ก ํ›ˆ๋ จํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๋˜ํ•œ, ์ž์—ฐ์–ด ๋ช…๋ น์„ ์ถ”๊ฐ€ ์ž…๋ ฅ์œผ๋กœ ๋ฐ›์•„๋“ค์—ฌ ์‚ฌ์šฉ์ž ํŽธ์˜์„ฑ์„ ๋†’์ผ ์ˆ˜ ์žˆ๋„๋ก ๋ชจ๋ธ์„ ํ™•์žฅํ•˜๋Š” ๋ฐฉํ–ฅ๋„ ๊ณ ๋ คํ•˜๊ณ  ์žˆ๋‹ค๊ณ  ์ „ํ–ˆ๋‹ค.


AI Teaches Robots the Best Way to Pack a Car, a Suitcaseโ€”Or a Rocket to Mars

Robots that can fit multiple items into a limited space could help pack a suitcase or a rocket to Mars

Packing the car for a road trip might seem like a straightforward enough task, but itโ€™s never been an easy one for robots to learnโ€”until a new study turned the robot training over to artificial intelligence. The implications of this research go far beyond a well-packed trunk and could eventually impact things ranging from how we manage our homes to how we colonize Mars.

Using a form of generative AI known as a โ€œdiffusion model,โ€ a team of researchers at the Massachusetts Institute of Technology and Stanford University trained robots to pack items into a limited space while adhering to a range of constraints: human concerns such as making sure that heavier items didnโ€™t crush lighter ones, that some items had a certain amount of space between them, that a robotโ€™s arm didnโ€™t accidentally strike the container and damage it, and so on. The diffusion model helped the robots accomplish this faster than training methods used in the past, the researchers say.

โ€œWe want to have a learning-based method to solve constraints quickly because learning-based [AI] will solve faster, compared to traditional methods,โ€ says M.I.T. Ph.D. student Zhutian โ€œSkyeโ€ Yang, lead author of a paper detailing the study, which was recently released ahead of peer review on preprint server arXiv.org. A โ€œlearning-basedโ€ approach involves allowing an AI program to learn autonomously by identifying patterns between training data and the desired output. This differs from previously tested โ€œrule-basedโ€ programs, which are more limited as they must behave within a strictly coded set of regulations. โ€œThe diffusion model is a very good method for sampling different solutions to a problem and jointly satisfying all of the constraints,โ€ Yang says.

Autonomous packing โ€œhas been a challenging problem,โ€ says Animesh Garg, an assistant professor of AI robotics at the Georgia Institute of Technology, who was not involved in the new study but works in a similar research area. โ€œWithout machine learning, the solution involves computationally intensive online 3-D bin packingโ€โ€”a rule-based technique that โ€œcan even be unsolvableโ€ depending on a programโ€™s coded limitations.

Previously, for a robot to solve a packing problem within the aforementioned constraints, it would have to work sequentially. It would develop possible packing configurations and test each against one constraint at a time, then check for conflicts with the other constraints. This trial-and-error method proved too slow, especially when there were more items to packโ€”and therefore more actions to test. In the new study, the diffusion model, on the other hand, allowed a robot to simultaneously explore an array of machine-learning models, each representing an individual constraint. The sum total of these models afforded the robot a more thorough view of the problem, enabling it to consider all constraints at once, almost instantaneously. As a result, many more successful packing configurations were found faster than they had been with previous techniques. The studyโ€™s diffusion method also proved capable of solving new combinations of constraints that were applied to a larger number of itemsโ€”beyond what the model experienced during training.

โ€œPacking with robots is incredibly hard yet transformational,โ€ Garg says. โ€œThis work enables robots to start โ€˜thinkingโ€™ on the fly and achieve very good, if not optimal, solutions quickly.โ€

โ€œItโ€™s a type of optimization problem,โ€ Yang says. โ€œWith the learning-based method, we're happy to see that if we train on the small problems, it can generalize to solving problems with a larger number of objects or a larger set of constraints.โ€

The study team also looked at how its learning algorithm aligned withโ€”or diverged fromโ€”most peopleโ€™s intuition about how to pack. Humans โ€œhave heuristics of packing things to the edge first,โ€ Yang says. โ€œIf you have a lot of things, you always pack them to the bottom left-hand side. Or if you are stacking things, you place things evenly, layer by layer, instead of all the way up one side and then the other.โ€ While these heuristics may seem logical from a human perspective, learning-based robots without our preconceptions are free to discover novel solutions.

But by analyzing data ahead of time and keeping likely end solutions in mind before you start packing, you eliminate the need for trial and error. To pack multiple objects into a limited spaceโ€”think a car trunk or a suitcaseโ€”like one of the studyโ€™s AI-powered robots, there are three steps. First, ponder ahead of time what you know about packing and what constraints must be met. Next, imagine solutions before you start loading objects. And finally, pack toward that ideal solution, not necessarily by following your intuition.

โ€œThere could be many solutionsโ€ that may not be intuitive, Yang says. โ€œAnd you can change the plan as you go.โ€

Robots gaining an ability to pack faster and more efficiently than their human counterparts has applications far beyond road trips. โ€œI want to have robots in the kitchen helping with housework,โ€ Yang explains. โ€œI just went to an industry robotic company to give a talk, and they are very interested in using this algorithm to pack for their customers.โ€ For instance, she suggests the technique could help shipping companies pack disparate items into a single container or drug companies deliver a wide variety of medications to hospitals in bulk. The possibilities even transcend the planet. โ€œIf youโ€™re going to Mars, you can have a robot decide how best to pack the resources,โ€ Yang suggests.

Garg agrees the implications may be far-reaching. โ€œRobotic packing and placement will enable a very large set of open-world robotic skills,โ€ he says. More studies are needed, however. โ€œThis work has very impressive results, but it is still a few steps from considering the problem โ€˜solved,โ€™โ€ Garg says. โ€œI hope that this work will galvanize the community to make quick progress in this domain.โ€

Now the team at M.I.T. and Stanford is working to make its robots even more capable at making โ€œdiscrete decisions.โ€ This involves not only teaching a robot to pack within constraints but also training it to do so within continuously shifting variablesโ€”for example, when tasked with packing items while simultaneously moving through a room.

So the next time youโ€™re packing, consider doing it like a robot to optimize results. Before long, you might simply leave it entirely up to the machines.

Picture

Member for

8 months 2 weeks
Real name
๊น€๊ด‘์žฌ
Position
์—ฐ๊ตฌ์›
Bio
[email protected]
๊ท ํ˜• ์žกํžŒ ์‹œ๊ฐ์œผ๋กœ ์ธ๊ณต์ง€๋Šฅ ์†Œ์‹์„ ์ „๋‹ฌํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.

๊ด€๋ จ๊ธฐ์‚ฌ

Previous Next

โ€œ์ค‘๊ตญ ์‹œ์žฅ ๋งž์ถคํ˜• ์ €์‚ฌ์–‘ ๋ฐ˜๋„์ฒด ๊ฐœ๋ฐœโ€, ๊ธฐ์ˆ  ๋ฐœ์ „์— ์—ญํ–‰ํ•˜๋Š” ์—”๋น„๋””์•„์˜ ์†์‚ฌ์ •

โ€œ์ค‘๊ตญ ์‹œ์žฅ ๋งž์ถคํ˜• ์ €์‚ฌ์–‘ ๋ฐ˜๋„์ฒด ๊ฐœ๋ฐœโ€, ๊ธฐ์ˆ  ๋ฐœ์ „์— ์—ญํ–‰ํ•˜๋Š” ์—”๋น„๋””์•„์˜ ์†์‚ฌ์ •
Picture

Member for

8 months 2 weeks
Real name
์•ˆํ˜„์ •
Position
์—ฐ๊ตฌ์›
Bio
[email protected]
์ •๋ณด ๋ฒ”๋žŒ์˜ ์‹œ๋Œ€๋ฅผ ํ•จ๊ป˜ ํ—ค์ณ ๋‚˜๊ฐˆ ๋™๋ฐ˜์ž๋กœ์„œ ๊ผญ ํ•„์š”ํ•œ ์ •๋ณด, ๊ฑฐ์ง“ ์—†๋Š” ์ •๋ณด๋งŒ์„ ์ „ํ•˜๊ธฐ ์œ„ํ•ด ๋…ธ๋ ฅํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค. ์˜ค๋Š˜์„ ์‚ฌ๋Š” ๋ชจ๋“  ๋ถ„์„ ์‘์›ํ•ฉ๋‹ˆ๋‹ค.

์ˆ˜์ •

์ปดํ“จํŒ… ์„ฑ๋Šฅ ๋‚ฎ์ถ˜ H20ยทL20ยทL2 ๊ฐœ๋ฐœ
๋ฏธ ์ •๋ถ€ โ€œ์ˆ˜์ถœ ์ฐจ๋‹จ ๋ชฉ๋ก ์—…๋ฐ์ดํŠธํ•  ๊ฒƒโ€
๋ฐ˜๋„์ฒด ์ˆ˜์ถœ ์˜์กด๋„ ๋†’์€ ํ•œ๊ตญ๋„ ํƒ€๊ฒฉ ์ „๋ง
231207์—”๋น„๋””์•„
์—”๋น„๋””์•„์˜ ์ธ๊ณต์ง€๋Šฅ ๋ฐ˜๋„์ฒด GH200/์‚ฌ์ง„=์—”๋น„๋””์•„

๋ฏธ๊ตญ ๋ฐ˜๋„์ฒด ๊ธฐ์—… ์—”๋น„๋””์•„๊ฐ€ ๋Œ€์ค‘๊ตญ ์ˆ˜์ถœ ๊ทœ์ œ์— ๋งž๋Š” ์‹ ํ˜• ๋ฐ˜๋„์ฒด ์นฉ ๊ฐœ๋ฐœ์— ๋‚˜์„ ๋‹ค. ๋ฏธ ์ •๋ถ€์˜ ์ˆ˜์ถœ ๊ทœ์ œ๊ฐ€ ํ•œ์ธต ๊ฐ•ํ™”๋œ ๋ฐ ๋”ฐ๋ฅธ ๊ฒƒ์œผ๋กœ, ๊ธฐ์ˆ ์˜ ๋ฐœ์ „์„ ์—ญํ–‰ํ•ด โ€˜์ €์‚ฌ์–‘โ€™ ๋ฐ˜๋„์ฒด ์นฉ์„ ๊ฐœ๋ฐœํ•˜๋Š” ์—”๋น„๋””์•„์˜ ํ–‰๋ณด์— ๋งŽ์€ ๊ธฐ์—…์ด ์ฃผ๋ชฉํ•˜๊ณ  ์žˆ๋‹ค.

์ค‘๊ตญ ์‹œ์žฅ ํฌ๊ธฐ ๋ชป ํ•˜์ง€๋งŒ, ์ •๋ถ€์™€ ํ˜‘๋ ฅํ•˜๊ฒ ๋‹ค๋Š” ์—”๋น„๋””์•„

๋กœ์ดํ„ฐํ†ต์‹ ์„ ๋น„๋กฏํ•œ ๋‹ค์ˆ˜์˜ ์™ธ์‹ ์€ ์  ์Šจ ํ™ฉ ์—”๋น„๋””์•„ ์ตœ๊ณ ๊ฒฝ์˜์ž(CEO)๊ฐ€ 6์ผ(ํ˜„์ง€ ์‹œ๊ฐ) ์‹ฑ๊ฐ€ํฌ๋ฅด์—์„œ ์—ด๋ฆฐ ๊ธฐ์žํšŒ๊ฒฌ์— ์ฐธ์„ํ•ด ๋ฏธ๊ตญ์˜ ๋Œ€์ค‘๊ตญ ์ˆ˜์ถœ ๊ทœ์ œ์— ๋งž๋Š” ์ƒˆ ๋ฐ˜๋„์ฒด ์นฉ์„ ๊ฐœ๋ฐœํ•  ๊ณ„ํš์„ ๋ฐํ˜”๋‹ค๊ณ  ๋ณด๋„ํ–ˆ๋‹ค. ์ด๋‚  ํ™ฉ CEO๋Š” โ€œ์šฐ๋ฆฌ๋Š” ์ •๋ถ€ ๊ทœ์ œ์— ์•Œ๋งž์€ ์ œํ’ˆ์„ ๊ฐœ๋ฐœํ•˜๊ธฐ ์œ„ํ•ด ๋ฏธ ์ •๋ถ€์™€ ๊ธด๋ฐ€ํžˆ ํ˜‘๋ ฅํ•˜๊ณ  ์žˆ๋‹คโ€๋ฉฐ ์ค‘๊ตญ ์ˆ˜์ถœ์šฉ ๋ฐ˜๋„์ฒด ์นฉ ๊ฐœ๋ฐœ ์†Œ์‹์„ ์ „ํ–ˆ๋‹ค. ์ด์–ด โ€œ์ƒˆ ์ œํ’ˆ์„ ๋ฌด์‚ฌํžˆ ์ถœ์‹œํ•  ๋•Œ๊นŒ์ง€ ๋ฏธ ์ •๋ถ€์™€ ํ˜‘๋ ฅํ•  ๊ฒƒโ€์ด๋ผ๊ณ  ๋งํ–ˆ๋‹ค.

๋‚˜์•„๊ฐ€ ์—”๋น„๋””์•„๋Š” 2024๋…„ 1๋ถ„๊ธฐ ์ค‘๊ตญ ์‹œ์žฅ์— ํŠนํ™”๋œ ์ธ๊ณต์ง€๋Šฅ(AI) ์นฉ์„ ์ถœ์‹œํ•  ์˜ˆ์ •์ด๋ผ๊ณ  ์ค‘๊ตญ ์ธก ๊ณ ๊ฐ์‚ฌ๋“ค์— ์ „๋‹ฌํ–ˆ๋‹ค. ๋‹ค๋งŒ ์—”๋น„๋””์•„๋Š” ๋ฏธ๊ตญ ๋‚ด์—์„œ ์ด๋ฅผ ๊ณต์‹ํ™”ํ•˜์ง€๋Š” ์•Š์•˜๋‹ค. ์ง€๋‚œ 11์›” ํ•œ ์ค‘๊ตญ ๋งค์ฒด๋Š” ์—”๋น„๋””์•„๊ฐ€ ์ตœ์‹ ํ˜• ๋ชจ๋ธ์ธ H100์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ฏธ๊ตญ ์ •๋ถ€์˜ ์ˆ˜์ถœ ํ†ต์ œ ์กฐ์น˜์— ๋ถ€ํ•ฉํ•˜๋Š” ์‚ฌ์–‘์˜ โ–ณHGX H20 โ–ณL20 PCle โ–ณL2 PCle ๋“ฑ ๋ชจ๋ธ์„ ๊ฐœ๋ฐœ ์ค‘์ด๋ผ๊ณ  ๋ณด๋„ํ•˜๊ธฐ๋„ ํ–ˆ๋‹ค.

์—”๋น„๋””์•„๊ฐ€ ์ •๋ถ€์˜ ๊ทœ์ œ๋ฅผ ํ”ผํ•  ์ƒˆ ์ œํ’ˆ์„ ๋งŒ๋“ค๋ฉด์„œ๊นŒ์ง€ ์ค‘๊ตญ๊ณผ์˜ ๊ฑฐ๋ž˜๋ฅผ ์ง€์†ํ•˜๊ฒ ๋‹ค๋Š” ์˜์ง€๋ฅผ ๋ฐํžŒ ๊ฐ€์šด๋ฐ ๋ฏธ ์ •๋ถ€๋Š” ๊ฐ•ํ•œ ๊ฒฝ๊ณ ์˜ ๋ฉ”์‹œ์ง€๋ฅผ ๋ณด๋ƒˆ๋‹ค. ์ง€๋‚˜ ๋Ÿฌ๋ชฌ๋„ ๋ฏธ ์ƒ๋ฌด๋ถ€ ์žฅ๊ด€์€ ์ตœ๊ทผ ๊ธฐ์ž ๊ฐ„๋‹ดํšŒ์—์„œ โ€œ(์ค‘๊ตญ์€) ์šฐ๋ฆฌ๊ฐ€ ๊ทธ๋™์•ˆ ๊ฒช์—ˆ๋˜ ๊ฐ€์žฅ ํฐ ์œ„ํ˜‘์œผ๋กœ, ๋” ์ด์ƒ ์นœ๊ตฌ๊ฐ€ ์•„๋‹ˆ๋‹คโ€๋ผ๊ณ  ๊ฐ•์กฐํ•˜๋ฉฐ ๊ตญ๊ฐ€์•ˆ๋ณด์— ํ•ต์‹ฌ์ธ ๋ฐ˜๋„์ฒด์™€ ์ฒจ๋‹จ ๊ธฐ์ˆ ์ด ์ค‘๊ตญ์œผ๋กœ ํ˜๋Ÿฌ ๋“ค์–ด๊ฐ€๋Š” ๊ฒƒ์„ ๊ฒฝ๊ณ„ํ•ด์•ผ ํ•œ๋‹ค๊ณ  ์—ญ์„คํ–ˆ๋‹ค.

์ด์–ด โ€œ๋™๋งน๊ตญ ์—†์ด ์ˆ˜์ถœ์„ ํ†ต์ œํ•œ๋‹ค๋ฉด ๋” ํฐ ๋ฌธ์ œ๊ฐ€ ๋  ์ˆ˜ ์žˆ๋‹คโ€๊ณ  ์ง€์ ํ•˜๋ฉฐ โ€œ์ค‘๊ตญ์ด ๋…์ผ์ด๋‚˜ ๋„ค๋œ๋ž€๋“œ, ์ผ๋ณธ, ํ•œ๊ตญ ๋“ฑ์—์„œ ๊ธฐ์ˆ ์„ ์Šต๋“ํ•˜๊ฒŒ ๋  ๊ฒƒโ€์ด๋ผ๊ณ  ๋งํ–ˆ๋‹ค. ์ด์–ด โ€œ์ด๋Š” ์šฐ๋ฆฌ์˜ ์ˆ˜์ถœ ํ†ต์ œ๊ฐ€ ์ถฉ๋ถ„ํ•˜์ง€ ์•Š์œผ๋ฉด ์ค‘๊ตญ์ด ๋ฏธ๊ตญ์˜ ๊ธฐ์ˆ ์„ ํ™œ์šฉํ•ด ํ•ต์‹คํ—˜์„ ํ•  ์ˆ˜๋„ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹คโ€๊ณ  ํž˜์ค˜ ๋งํ–ˆ๋‹ค. ์—”๋น„๋””์•„๋ฅผ ๋น„๋กฏํ•œ ์ผ๋ถ€ ๊ธฐ์—…์ด ๋ฏธ ์ •๋ถ€์˜ ์ˆ˜์ถœ ํ†ต์ œ ๊ธฐ์ค€์„ ํ”ผํ•œ ์ƒˆ๋กœ์šด ๋ฐ˜๋„์ฒด ์นฉ ๊ฐœ๋ฐœ์— ๋‚˜์„  ๊ฒƒ๊ณผ ๊ด€๋ จํ•ด์„œ๋Š” โ€œ์—…๊ณ„์™€ ๋งŽ์€ ๋Œ€ํ™”๋ฅผ ๋‚˜๋ˆ„๊ณ  ์žˆ๋‹คโ€๋ฉด์„œ๋„ โ€œ์ค‘๊ตญ์„ ์œ„ํ•œ ๋ชจ๋ธ์„ ์„ค๊ณ„ํ•ด ์ถœ์‹œํ•˜๋ฉด ์ฆ‰๊ฐ ํ•ด๋‹น ๋ชจ๋ธ๋„ ์ˆ˜์ถœ ํ†ต์ œ์— ํฌํ•จ ๊ฒƒโ€์ด๋ผ๊ณ  ๊ฒฝ๊ณ ํ–ˆ๋‹ค.

๋‚ฎ์ถ˜ ๋ฐ โ€˜๋˜โ€™ ๋‚ฎ์ถ”๋‹ค

์ด์ฒ˜๋Ÿผ ๋ฏธ ์ •๋ถ€์˜ ์ˆ˜์ถœ ํ†ต์ œ ์˜์ง€๊ฐ€ ๊ฐˆ์ˆ˜๋ก ๊ฐ•ํ•ด์ง€๊ณ  ์žˆ์ง€๋งŒ, ์—”๋น„๋””์•„์˜ ์ˆ˜์ถœ ์˜์ง€ ์—ญ์‹œ ๋งŒ๋งŒ์น˜ ์•Š์€ ๋ชจ์–‘์ƒˆ๋‹ค. ๋Œ€์ค‘๊ตญ ์˜์กด๋„๊ฐ€ ๋†’์€ ์—”๋น„๋””์•„๋Š” ์ง€๋‚œํ•ด ํ•œ ์ฐจ๋ก€์˜ ์ˆ˜์ถœ ํ†ต์ œ๋กœ ์ตœ์‹  ๋ชจ๋ธ H100, A100์˜ ์ค‘๊ตญ ํŒ๋งค๊ฐ€ ์–ด๋ ค์›Œ์ง„ ํ›„ ์„ฑ๋Šฅ์„ ๋‚ฎ์ถฐ H800, A800์„ ์ถœ์‹œํ–ˆ์ง€๋งŒ, ์ด๋งˆ์ € ์ˆ˜์ถœ๊ธธ์ด ๋ง‰ํžˆ๋ฉด์„œ ํฐ ํƒ€๊ฒฉ์ด ์ž…์—ˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค.

๋ฏธ๊ตญ์€ ์ง€๋‚œํ•ด์— ์ด์–ด ์˜ฌํ•ด 10์›”์—๋„ ์ผ๋ถ€ ๋ฐ˜๋„์ฒด ์นฉ์˜ ์ค‘๊ตญ ์ˆ˜์ถœ์„ ๋ง‰๋Š” ์ถ”๊ฐ€ ์ œ์žฌ๋ฅผ ๋ฐœํ‘œํ–ˆ๋‹ค. ์—ฌ๊ธฐ์—๋Š” ์—”๋น„๋””์•„์˜ ์ค‘๊ตญ ๋งž์ถค์šฉ ์นฉ H800, A800๋„ ํฌํ•จ๋๋‹ค. ์ด๋ฅผ ๋‘๊ณ  ์‹œ์žฅ์—์„œ๋Š” ๋ฏธ ์ •๋ถ€์˜ ์ถ”๊ฐ€ ์ˆ˜์ถœ ํ†ต์ œ ์กฐ์น˜๊ฐ€ ์‚ฌ์‹ค์ƒ ์—”๋น„๋””์•„๋ฅผ ๊ฒจ๋ƒฅํ•œ ์›€์ง์ž„์ด๋ผ๋Š” ํ•ด์„๋„ ๋‚˜์˜จ๋‹ค.

์ด์— ์—”๋น„๋””์•„๋Š” ์ถ”๊ฐ€ ์ €์‚ฌ์–‘ ๋ชจ๋ธ ๊ฐœ๋ฐœ๋กœ ๋Œ€์‘ํ–ˆ๋‹ค. ์ค‘๊ตญ ์‹œ์žฅ์„ ๊ฒจ๋ƒฅํ•ด ๊ฐœ๋ฐœํ•œ H20, L20, L2 ๋“ฑ 3์ข… ๋ชจ๋ธ์ด ๊ทธ๊ฒƒ์œผ๋กœ, ์ด๋“ค ์ œํ’ˆ์€ AI ์ž‘์—…์— ํ•„์š”ํ•œ ๋Œ€๋ถ€๋ถ„์˜ ์ตœ์‹  ๊ธฐ๋Šฅ์„ ํฌํ•จํ•˜๋ฉด์„œ๋„ ์ •๋ถ€ ๊ทœ์ •์— ๋งž์ถ”๊ธฐ ์œ„ํ•ด ์ปดํ“จํŒ… ์„ฑ๋Šฅ ์ผ๋ถ€๋ฅผ ์ค„์ธ ๊ฒƒ์œผ๋กœ ์ „ํ•ด์กŒ๋‹ค. ๋‹ค๋งŒ H20 ๋ชจ๋ธ์˜ ๊ฒฝ์šฐ ์„œ๋ฒ„ ์ œ์กฐ์—…์ฒด๋“ค์ด ๋ฐ˜๋„์ฒด๋ฅผ ์ œํ’ˆ์— ํ†ตํ•ฉํ•˜๋Š” ๊ณผ์ •์—์„œ ์ผ๋ถ€ ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•ด ์ถœ์‹œ๊ฐ€ ์ง€์—ฐ๋  ๊ฐ€๋Šฅ์„ฑ์ด ํฐ ์ƒํƒœ๋‹ค.

์ง€๋‚œ 11์›” ์—”๋น„๋””์•„๋Š” ์˜ฌํ•ด 4๋ถ„๊ธฐ ์ค‘๊ตญ ๋งค์ถœ ๊ธ‰๋ฝ์ด ํƒ€์ง€์—ญ ๋งค์ถœ ์ƒ์Šน๋ถ„์„ ์ƒ์‡„ํ•  ์ •๋„๋กœ ํด ์ „๋ง์ด๋ผ๊ณ  ๋ฐํžŒ ๋ฐ” ์žˆ๋‹ค. ๋ฏธ ์ •๋ถ€์˜ ์ˆ˜์ถœ ํ†ต์ œ๊ฐ€ ๊ธฐ์—…์˜ ์ˆ˜์ต์„ฑ์„ ํฌ๊ฒŒ ํ•ด์น˜๊ณ  ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค์„ ์šฐํšŒ์ ์œผ๋กœ ํ‘œํ˜„ํ•œ ๊ฒƒ์ด๋‹ค. CNBC์— ๋”ฐ๋ฅด๋ฉด ์˜ฌํ•ด 3๋ถ„๊ธฐ ๊ธฐ์ค€ ์—”๋น„๋””์•„ ์ „์ฒด ๋งค์ถœ ์ค‘ ์ค‘๊ตญ ๋งค์ถœ์€ 22.24%๋กœ ๋ฏธ๊ตญ(34.77%)๊ณผ ๋Œ€๋งŒ(23.91%)์— ์ด์–ด ์„ธ ๋ฒˆ์งธ๋กœ ํฐ ๋น„์ค‘์„ ์ฐจ์ง€ํ•œ๋‹ค.

231207๋ฒค์ฒ˜

๋™๋งน๊ตญ์—๋„ ์ค‘๊ตญ ์ˆ˜์ถœ ์ฐจ๋‹จ ๊ฐ•์š”ํ•˜๋Š” ๋ฏธ๊ตญ

๋ฏธ๊ตญ์ด ์ค‘๊ตญ์œผ๋กœ์˜ ๋ฐ˜๋„์ฒด ์ˆ˜์ถœ ํ†ต์ œ ์˜์ง€๋ฅผ ๋‹ค์‹œ ํ•œ๋ฒˆ ๊ฐ•ํ•˜๊ฒŒ ๋ฐํžŒ ๊ฐ€์šด๋ฐ ๋ฐ˜๋„์ฒด๊ฐ€ ๊ตญ๊ฐ€ ์‚ฐ์—…์˜ ์ƒ๋‹น ๋ถ€๋ถ„์„ ์ฐจ์ง€ํ•˜๋Š” ์šฐ๋ฆฌ๋‚˜๋ผ๋„ ์ด๊ฐ™์€ ์ด์„ฑ ์—†๋Š” ์ „์Ÿ์˜ ์˜ํ–ฅ๊ถŒ์—์„œ ๋ฒ—์–ด๋‚  ์ˆ˜ ์—†๊ฒŒ ๋๋‹ค. ์•ž์„œ ๋Ÿฌ๋ชฌ๋„ ์žฅ๊ด€์˜ ๋ฐœ์–ธ์—์„œ์ฒ˜๋Ÿผ ๋ฏธ๊ตญ์€ ์ž๊ตญ์˜ ๋ฐ˜๋„์ฒด ์ง์ ‘ ์ˆ˜์ถœ๋งŒํผ์ด๋‚˜ ๋™๋งน๊ตญ์˜ ์ค‘๊ตญ ๊ต์—ญ์—๋„ ์ด‰๊ฐ์„ ๊ณค๋‘์„ธ์šฐ๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค.

์‹ค์ œ๋กœ ์˜ฌํ•ด ์ดˆ ๋งˆ์ดํด ๋งค์ฝœ ํ•˜์› ์™ธ๊ต์œ„์›์žฅ๊ณผ ๋งˆ์ดํฌ ๊ฐค๋Ÿฌ๊ฑฐ ํ•˜์› ๋ฏธ์ค‘์ „๋žต๊ฒฝ์ŸํŠน์œ„ ์œ„์›์žฅ์€ ๋Ÿฌ๋ชฌ๋„ ์žฅ๊ด€์—๊ฒŒ โ€œ์ผ๋ณธ๊ณผ ํ•œ๊ตญ์˜ ๊ธฐ์—…๋“ค์ด ์šฐ๋ฆฌ ๊ธฐ์—…์ด ๋– ๋‚œ ์ค‘๊ตญ ๋ฐ˜๋„์ฒด ์‹œ์žฅ์„ ์ฑ„์šฐ์ง€ ์•Š๋„๋ก ํ˜‘์กฐ๋ฅผ ์š”๊ตฌํ•ด์•ผ ํ•œ๋‹คโ€๋Š” ๋‚ด์šฉ์˜ ์„œํ•œ์„ ๋ณด๋ƒˆ๊ณ , 4์›” ์œค์„์—ด ๋Œ€ํ†ต๋ น์˜ ๋ฐฉ๋ฏธ ๊ธฐ๊ฐ„์—๋Š” ๋ฏธ๊ตญ์ด ํ•œ๊ตญ ์ •๋ถ€์— ํ•ด๋‹น ๋‚ด์šฉ์„ ์ „๋‹ฌํ–ˆ๋‹ค๋Š” ํŒŒ์ด๋‚ธ์…œํƒ€์ž„์Šค์˜ ๋ณด๋„๊ฐ€ ๋‚˜์˜ค๊ธฐ๋„ ํ–ˆ๋‹ค. ๊ธฐ์ˆ ์•ˆ๋ณด๋ฅผ ์ฃผ์ฐฝํ•˜๋Š” ๋ฏธ๊ตญ์˜ ๊ฐ•ํ•œ ์™ธ์นจ ์†์— ์ค‘๊ตญ์˜ ๋ฐฉ๋Œ€ํ•œ ์‹œ์žฅ์„ ํฌ๊ธฐํ•˜๊ธฐ์—๋„ ์‰ฝ์ง€ ์•Š์€ ๊ธฐ์—…๋“ค์˜ ํ–‰๋ณด๊ฐ€ ์ „ ์„ธ๊ณ„ ๋ฐ˜๋„์ฒด ์ƒํƒœ๊ณ„ ์žฌํŽธ์œผ๋กœ ์ด์–ด์งˆ ์ˆ˜ ์žˆ์„์ง€ ์ด๋ชฉ์ด ์ ๋ฆฐ๋‹ค.

Picture

Member for

8 months 2 weeks
Real name
์•ˆํ˜„์ •
Position
์—ฐ๊ตฌ์›
Bio
[email protected]
์ •๋ณด ๋ฒ”๋žŒ์˜ ์‹œ๋Œ€๋ฅผ ํ•จ๊ป˜ ํ—ค์ณ ๋‚˜๊ฐˆ ๋™๋ฐ˜์ž๋กœ์„œ ๊ผญ ํ•„์š”ํ•œ ์ •๋ณด, ๊ฑฐ์ง“ ์—†๋Š” ์ •๋ณด๋งŒ์„ ์ „ํ•˜๊ธฐ ์œ„ํ•ด ๋…ธ๋ ฅํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค. ์˜ค๋Š˜์„ ์‚ฌ๋Š” ๋ชจ๋“  ๋ถ„์„ ์‘์›ํ•ฉ๋‹ˆ๋‹ค.

๊ด€๋ จ๊ธฐ์‚ฌ

Previous Next

[ํ•ด์™ธ DS] ์•„์‹œ์•„์˜ AI ํ˜๋ช… ๊ทœ์ œ, ํ˜์‹ ๊ณผ ๋…์  ์‚ฌ์ด์˜ ์ค„๋‹ค๋ฆฌ๊ธฐ

[ํ•ด์™ธ DS] ์•„์‹œ์•„์˜ AI ํ˜๋ช… ๊ทœ์ œ, ํ˜์‹ ๊ณผ ๋…์  ์‚ฌ์ด์˜ ์ค„๋‹ค๋ฆฌ๊ธฐ
Picture

Member for

8 months 2 weeks
Real name
์ดํšจ์ •
Position
์—ฐ๊ตฌ์›
Bio
[email protected]
์ง€์‹์€ ์ „๋‹ฌํ•˜๋Š” ์ •๋ณด๊ฐ€ ์•„๋‹ˆ๋ผ, ํ•จ๊ป˜ ๊ณ ๋ฏผํ•˜๊ธฐ ์œ„ํ•ด ๋งŒ๋“ค์–ด์ง„ ์–ธ์–ด์ž…๋‹ˆ๋‹ค.

์ˆ˜์ •

AI๋Š” ๊ฒฝ์ œ๋ฅผ ์žฌํŽธํ•˜๊ณ  ์„ฑ์žฅ์„ ์ฃผ๋„ํ•  ์ž ์žฌ๋ ฅ์ด ์žˆ์ง€๋งŒ, ๋…์ ๊ณผ ๋ฐฐ์ œ์˜ ์œ„ํ—˜๋„ ์žˆ์–ด
์ด๋ฅผ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•ด ๋ฐ์ดํ„ฐ์˜ ์ž์œ ๋กœ์šด ์ด๋™๊ณผ ์†Œ์™ธ๋œ ์ง€์—ญ์‚ฌํšŒ์˜ ์—ญ๋Ÿ‰ ๊ฐ•ํ™” ํ•„์š”
์•„์‹œ์•„์—์„œ๋Š” ์‹ฑ๊ฐ€ํฌ๋ฅด๊ฐ€ ์ด๋Ÿฌํ•œ ๋…ธ๋ ฅ์„ ์ฃผ๋„ํ•˜๊ณ  ์žˆ์–ด, ๊ตญ๊ฐ€ ๊ฐ„ ์กฐ์œจ์ด ์ค‘์š”ํ•ด

[ํ•ด์™ธDS]๋Š” ํ•ด์™ธ ์œ ์ˆ˜์˜ ๋ฐ์ดํ„ฐ ์‚ฌ์ด์–ธ์Šค ์ „๋ฌธ์ง€๋“ค์—์„œ ์ „ํ•˜๋Š” ์—…๊ณ„ ์ „๋ฌธ๊ฐ€๋“ค์˜ ์˜๊ฒฌ์„ ๋‹ด์•˜์Šต๋‹ˆ๋‹ค. ์ €ํฌ ๋ฐ์ดํ„ฐ ์‚ฌ์ด์–ธ์Šค ๊ฒฝ์˜ ์—ฐ๊ตฌ์†Œ (GIAI R&D Korea)์—์„œ ์˜์–ด ์›๋ฌธ ๊ณต๊ฐœ ์กฐ๊ฑด์œผ๋กœ ์ฝ˜ํ…์ธ  ์ œํœด๊ฐ€ ์ง„ํ–‰ ์ค‘์ž…๋‹ˆ๋‹ค.


์‚ฌ์ง„=Pexels

๊ณผ๊ฑฐ ์•Œ๋ ‰์‚ฐ๋“œ๋ฆฌ์•„ ํ•ญ๊ตฌ์— ์ƒ์ธ๋“ค์ด ๋„์ฐฉํ•˜๋ฉด ๊ทธ๋“ค์ด ์†์œผ๋กœ ์ง์ ‘ ์“ด ๋…ธํŠธ๋“ค์„ ์••์ˆ˜ํ•˜์—ฌ ๊ทธ ๋„์‹œ์˜ ์œ ๋ช…ํ•œ ๋„์„œ๊ด€์œผ๋กœ ๊ฐ€์ ธ๊ฐ€ ํ•„๊ฒฝ์‚ฌ๊ฐ€ ์‚ฌ๋ณธ์„ ๋งŒ๋“ค์—ˆ๋‹ค๊ณ  ํ•œ๋‹ค. ์žฌ๋ฐŒ๋Š” ๊ฒƒ์€ ์›๋ณธ์€ ์••์ˆ˜ํ•˜๊ณ  ์‚ฌ๋ณธ์„ ์ƒ์ธ์—๊ฒŒ ๋Œ๋ ค์ฃผ์—ˆ๋‹ค. ์˜ค๋Š˜๋‚  ๋””์ง€ํ„ธ ๊ฒฝ์ œ๋ฅผ ์ƒˆ๋กญ๊ฒŒ ์“ฐ๊ณ  ์žˆ๋Š” ์ƒ์„ฑํ˜• AI ํ”„๋กœ๊ทธ๋žจ์˜ ๋ฐฐํ›„์— ์žˆ๋Š” ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ์ž๋“ค์—๊ฒŒ๋„ ์•Œ๋ ‰์‚ฐ๋“œ๋ฆฌ์•„ ํ•ญ๊ตฌ์˜ ์•ฝํƒˆ ์ •์‹ ์ด ์—ฌ์ „ํžˆ ์‚ด์•„ ์žˆ๋Š” ๊ฒƒ์„ ๋ณผ ์ˆ˜ ์žˆ๋‹ค.

ChatGPT์™€ ๊ทธ ๊ฒฝ์Ÿ์—…์ฒด๋“ค์€ ๋Œ€๊ฐ€๋ฅผ ์ œ๋Œ€๋กœ ์ง€๊ธ‰ํ•˜์ง€ ์•Š๊ณ  ๋‹ค๋ฅธ ์ด๋“ค์˜ ํ…์ŠคํŠธ์™€ ๊ธฐํƒ€ ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ชจ๋ธ์„ ํ•™์Šตํ–ˆ๋‹ค. ChatGPT์™€ ๊ฐ™์€ ์ƒ์„ฑํ˜• ํ”„๋กœ๊ทธ๋žจ์˜ ๊ธฐ๋ฐ˜์ด ๋˜๋Š” ๋ง๋ญ‰์น˜๋ฅผ ๊ตฌ์ถ•ํ•˜๊ธฐ ์œ„ํ•ด ์ฒด๊ณ„์ ์œผ๋กœ ์ €์ž‘๊ถŒ์„ ์œ„๋ฐ˜ํ•œ OpenAI๋ฅผ ๊ณ ๋ฐœํ•˜๋Š” ์ž‘๊ฐ€๋“ค์˜ ๋Œ€๊ทœ๋ชจ ์†Œ์†ก์€ AI์—์„œ ํ—ˆ์šฉ๋˜๋Š” ๊ฒƒ๊ณผ ํ—ˆ์šฉ๋˜์ง€ ์•Š๋Š” ๊ฒƒ์— ์ œํ•œ์„ ๋‘๋ ค๋Š” ์ƒˆ๋กœ์šด ๊ทœ์ œ ํ˜•์„ฑ์˜ ์‹œ์ž‘์— ๋ถˆ๊ณผํ•˜๋‹ค.

์„ฑ์žฅ๊ณผ ๋…์ ์˜ ๋”œ๋ ˆ๋งˆ

๊ทธ๋Ÿฌ๋‚˜ ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ๋ฌธ์ œ๊ฐ€ ๋ณต์žก์„ฑ์„ ์ฆ๊ฐ€์‹œํ‚ค๊ณ  ์žˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ์ดˆ๊ธฐ ๋””์ง€ํ„ธ ํ˜์‹ ์ธ ๊ฒ€์ƒ‰ ์—”์ง„๊ณผ๋Š” ๋‹ค๋ฅด๊ฒŒ AI๋Š” ๋” ํฐ ์„ ์  ํšจ๊ณผ์™€ ๊ทœ๋ชจ์˜ ๊ฒฝ์ œ๋กœ ์ธํ•ด ์ž์—ฐ ๋…์ ์œผ๋กœ ์ง„ํ™”ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์ด๋‹ค. ๋งˆ์ดํฌ๋กœ์†Œํ”„ํŠธ์™€ ๊ฐ™์€ ์†Œํ”„ํŠธ์›จ์–ด ์ œ์กฐ์—…์ฒด์— ๋Œ€ํ•œ ๋ฐ˜๋…์  ์†Œ์†ก์€ ์ผ๋ถ€ ํ•ฉ์˜๋กœ ๋งˆ๋ฌด๋ฆฌ๋˜์—ˆ์ง€๋งŒ, ๊ฒฝ์Ÿ์  ํ–‰์œ„์™€ ํ˜์‹ ์˜ ๊ฒฝ๊ณ„๋ฅผ ๋ช…ํ™•ํžˆ ํ•˜๋Š” ๋””์ง€ํ„ธ ๊ฒฝ์ œ์˜ ์ผ๋ฐ˜์ ์ธ ์›์น™์„ ์ˆ˜๋ฆฝํ•˜๋Š” ๋ฐ ํฐ ๋„์›€์ด ๋˜์ง€ ๋ชปํ–ˆ๋‹ค.

๋‘ ๋ฒˆ์งธ ๋ฌธ์ œ๋Š” AI๊ฐ€ ๊ตญ๊ฐ€ ์•ˆ๋ณด์— ๋งค์šฐ ์ค‘์š”ํ•˜๊ฒŒ ์ž‘์šฉํ•˜๋ฉฐ, ๋…์ ์  ์ง€์œ„๊ฐ€ ํ˜•์„ฑ๋œ๋‹ค๋ฉด ๊ฐ ๊ตญ๊ฐ€๋Š” ๊ฒฝ์ œ์ , ์•ˆ๋ณด์  ์ด์œ ๋กœ ์ž๊ตญ ๊ธฐ์—…์˜ ์‹œ์žฅ ์ง€๋ฐฐ๋ฅผ ์„ ํ˜ธํ•  ๊ฒƒ์ด๋ผ๋Š” ์ ์ด๋‹ค. ๋†’์€ ์ง„์ž… ์žฅ๋ฒฝ๊ณผ ์ฆ๊ฐ€ํ•˜๋Š” ๊ทœ๋ชจ์˜ ๊ฒฝ์ œ๋Š” ์ด๋ฏธ ๋ฏธ๊ตญ๊ณผ ์ค‘๊ตญ์˜ ๊ธฐ์กด ๊ธฐ์—…๋“ค์ด ์šฐ์œ„๋ฅผ ์ ํ•˜๊ฒŒ ํ–ˆ๋‹ค.

๋ถˆ์•ˆ์ •ํ•œ ์ง€์ •ํ•™์  ์ƒํ™ฉ๊ณผ ๋ถ„์—ด๋œ ์„ธ๊ณ„ ๊ฒฝ์ œ๋ฅผ ๊ณ ๋ คํ•  ๋•Œ, ์ƒˆ๋กœ์šด ๋””์ง€ํ„ธ ํ”„๋Ÿฐํ‹ฐ์–ด๋Š” ์„ธ๊ณ„์—์„œ ๊ฐ€์žฅ ํฐ ๋‘ ๊ฒฝ์ œ ๋Œ€๊ตญ ๊ฐ„์˜ ๊ฒฝ์Ÿ์˜ ์žฅ์ด ๋˜์—ˆ๊ณ , ์ด๋Š” ํŠนํžˆ ์•„์‹œ์•„์˜ ์†Œ๊ทœ๋ชจ ๊ฒฝ์ œ์— ํฐ ์œ„ํ—˜์„ ์•ˆ๊ฒผ๋‹ค.

๋ณ€์น˜ ์•Š๋Š” ๊ฐ€์น˜ ๊ธฐ๋ฐ˜์œผ๋กœ ์†Œ๊ทœ๋ชจ ๊ฒฝ์ œ ๋ณดํ˜ธ

์ƒˆ๋กœ์šด ๊ธฐ์ˆ ์€ ์ข…์ข… ๊ธฐ์กด์˜ ๊ทœ์น™์„ ํ”๋“ค์ง€๋งŒ, ๊ทธ๋“ค์˜ ๊ธฐ๋ฐ˜์ด ๋˜๋Š” ๊ฐ€์น˜๋Š” ๋ณ€ํ•˜์ง€ ์•Š๋Š”๋‹ค. AI๊ฐ€ ์„ธ๊ณ„ ๊ฒฝ์ œ์˜ ๋ชจ๋“  ์˜์—ญ์œผ๋กœ ๋น ๋ฅด๊ฒŒ ์ „ํŒŒ๋˜๋ฉด์„œ ์ƒˆ๋กœ์šด ๊ตญ์ œ ๊ฒฝ์ œ ๊ทœ์น™์˜ ํ•„์š”์„ฑ์ด ๋Œ€๋‘๋˜์—ˆ์ง€๋งŒ, ์ด๋Ÿฌํ•œ ๊ทœ์น™์€ ์ด๋ฏธ ์ž…์ฆ๋œ ๊ตญ์ œ์  ๊ฐœ๋ฐฉ์„ฑ๊ณผ ํˆฌ๋ช…์„ฑ ๋“ฑ์˜ ์›์น™์— ๊ทผ๊ฑฐํ•ด์•ผ ํ•œ๋‹ค.

AI ๊ฒฝ์ œ์—์„œ ๋ฏธ๊ตญ๊ณผ ์ค‘๊ตญ์˜ ๊ถŒ๋ ฅ ์ค‘์•™ํ™”๋ฅผ ๊ณ ๋ คํ•  ๋•Œ, ์•„์‹œ์•„๋Š” ์†Œ๊ทœ๋ชจ ๊ฒฝ์ œ์— ํ•ด๋ฅผ ๋ผ์น˜์ง€ ์•Š์œผ๋ฉด์„œ๋„ ํ•ฉ๋ฒ•์ ์ธ ๊ตญ๊ฐ€ ์•ˆ๋ณด ์šฐ๋ ค๋ฅผ ํ•ด์†Œํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด AI ์ฐธ์—ฌ ๊ทœ์น™์˜ ์ฑ„ํƒ์„ ์ด‰์ง„ํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•  ์ˆ˜ ์žˆ๋‹ค. ์‹ฑ๊ฐ€ํฌ๋ฅด์˜ ์ ๊ทน์ ์ธ ๋…ธ๋ ฅ์€ ์ด๋ฅผ ์ž˜ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค.

์ตœ์‹  ๋™์•„์‹œ์•„ ํฌ๋Ÿผ ๋ถ„๊ธฐ๋ณ„ ๋ณด๊ณ ์„œ์—์„œ ๋ฐœ์ทŒํ•œ ์ œ์ด์ปต ํ…Œ์ผ๋Ÿฌ(Jacob Taylor)์˜ ๊ธ€์„ ํ†ตํ•ด ํฌ๊ด„์ ์ธ AI ๊ฑฐ๋ฒ„๋„Œ์Šค ์‹œ์Šคํ…œ์˜ ์ž ์žฌ์  ํŠน์ง•์„ ์‚ดํŽด๋ณด๋ฉด, ๊ทธ๋Š” ์ง€์—ญ ํ˜‘๋ ฅ์„ ํ†ตํ•ด ๋ฐ์ดํ„ฐ์˜ ํ˜„์ง€ํ™” ๊ฒฝํ–ฅ์„ ๊ทน๋ณตํ•˜๊ณ  ๊ตญ๊ฒฝ์„ ๋„˜์–ด ์ž์œ ๋กญ๊ณ  ์ž˜ ๊ทœ์ œ๋œ ๋ฐ์ดํ„ฐ ์ด๋™์„ ๋ณด์žฅํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค. ์ด๋Š” ์ง€์—ญ ๋‚ด ์†Œ๊ทœ๋ชจ ๊ธฐ์—…๋“ค์˜ ์ง„์ž… ์žฅ๋ฒฝ์„ ๋‚ฎ์ถœ ์ˆ˜ ์žˆ๋Š” ๊ทœ์ œ ๋ฐฉํ–ฅ์ด๋‹ค. ์•„์‹œ์•„์˜ ์‹ ํฅ ๋””์ง€ํ„ธ ๊ฒฝ์ œ์—์„œ ์†Œ์™ธ๋œ ์ง€์—ญ์‚ฌํšŒ๋ฅผ ๊ฐ•ํ™”ํ•˜๊ธฐ ์œ„ํ•ด ํšจ๊ณผ์ ์ธ ์ž๊ธˆ ์กฐ๋‹ฌ๊ณผ ๊ทœ์ œ ์ง€์›์ด ํ•„์š”ํ•˜๋‹ค.

๋ฏธยท์ค‘ ๋Œ€๋ฆฝ์œผ๋กœ AI ๊ทœ์ œ ํ˜‘๋ ฅ์€ ๋” ๋‚œํ•ญ

๋ฌผ๋ก  AI๋ฅผ ๊ด€๋ฆฌํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๊ทœ์น™์„ ๊ณ ์•ˆํ•˜๋ ค๋Š” ๋ชจ๋“  ์‹œ๋„๋Š” ์ง€์ •ํ•™์  ๋ผ์ด๋ฒŒ์—๊ฒŒ ์–ด๋–ค ์ด์ ๋„ ์–‘๋ณดํ•˜์ง€ ์•Š์œผ๋ ค๋Š” ์›Œ์‹ฑํ„ด๊ณผ ๋ฒ ์ด์ง•์˜ ๊ณ ์ง‘์— ๋ถ€๋”ชํž ๊ฒƒ์ด๋‹ค. ๋ฏธ๊ตญ์ด ์„ธ๊ณ„๋ฌด์—ญ๊ธฐ๊ตฌ์˜ ๊ต์ฐฉ ์ƒํƒœ๋ฅผ ๋ฐฉ์น˜ํ•˜๊ณ  ํ˜‘์ƒ ํ…Œ์ด๋ธ”์— ๋‚˜์˜ค๊ธฐ๋ฅผ ๊ฑฐ๋ถ€ํ•˜๋Š”๋ฐ, ์ค‘์š” ๊ตญ๊ฐ€๋“ค์˜ ๋™์˜๋ฅผ ์–ป์€ ํšจ๊ณผ์ ์ด๊ณ  ํฌ๊ด„์ ์ธ AI ๊ทœ์ •์„ ์ƒ์ƒํ•˜๋Š” ๊ฒƒ์€ ๋„ˆ๋ฌด ์ˆœ์ง„ํ•œ ์ƒ๊ฐ์ผ ์ˆ˜ ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค. ๋ฏธ๊ตญ์ด ์ฐธ์—ฌํ•˜๊ณ  ์žˆ๋Š” G7 AI ์ด๋‹ˆ์…”ํ‹ฐ๋ธŒ์—์„œ๋„ ์ค‘๊ตญ์€ ์ฐธ์—ฌ๊ตญ์ด ์•„๋‹ˆ์—ˆ๋‹ค.

ํ…Œ์ผ๋Ÿฌ๊ฐ€ ์ฃผ์žฅํ•˜๋“ฏ์ด AI ์‹œ์Šคํ…œ์˜ ๊ถŒ๋ ฅ ์ง‘์ค‘ํ™”, ์ง€์—ญํ™”, ๋ฐฐ์ œ ๋ฌธ์ œ์— ๋Œ€ํ•œ ์‰ฌ์šด ํ•ด๋‹ต์€ ์—†๋‹ค. ํ•˜์ง€๋งŒ ์กฐ์œจ๋œ AI ๊ฑฐ๋ฒ„๋„Œ์Šค๋Š” ๋‹ค์–‘ํ•œ ์ง€์—ญ ์ดํ•ด๊ด€๊ณ„์ž๋“ค์ด AI ์‹œ์Šคํ…œ์„ ์ ๊ทน์ ์œผ๋กœ ๊ด€๋ฆฌํ•˜๋„๋ก ๋™๊ธฐ๋ฅผ ๋ถ€์—ฌํ•˜๋Š” ๋™์‹œ์— ์œ„ํ—˜์— ๋Œ€ํ•œ ํˆฌ๋ช…์„ฑ์„ ๋†’์ผ ์ˆ˜ ์žˆ๋Š” ๋ถ„๋ช…ํ•œ ์ธ์„ผํ‹ฐ๋ธŒ๊ฐ€ ์ž๋ฆฌ ์žก๊ณ  ์žˆ๋‹ค.

ํŠนํžˆ ๋Œ€๋ถ€๋ถ„์˜ ๋””์ง€ํ„ธ ๊ฑฐ๋ž˜์˜ ๊ตญ๊ฒฝ ์—†๋Š” ํŠน์„ฑ์„ ๊ณ ๋ คํ•  ๋•Œ, ๊ธฐ์ˆ ์˜ ๋ฐœ์ „์€ ๊ทœ์ œ ๋‹น๊ตญ์ด ๋”ฐ๋ผ์žก์„ ์ˆ˜ ์žˆ๋Š” ์†๋„๋ณด๋‹ค ๋” ๋น ๋ฅด๊ฒŒ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. AI๊ฐ€ ๊ฒฝ์ œ๋ฅผ ์žฌํŽธํ•˜๊ณ  ์„ฑ์žฅ์„ ์ฃผ๋„ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฒ”์œ„๋Š” ๋ถ„๋ช…ํ•˜์ง€๋งŒ, ๋ฐ์ดํ„ฐ๋ฅผ ๊ตญ๊ฒฝ์— ๊ฐ€๋‘์–ด ํ˜œํƒ์„ ๋…์ ํ•˜๊ฑฐ๋‚˜ ๋‚ญ๋น„ํ•˜์ง€ ์•Š๊ณ  ํ›จ์”ฌ ๋” ๋งŽ์€ ์‚ฌ๋žŒ์ด ๊ฐœ๋ฐœ ๊ณผ์ •์— ์ฐธ์—ฌํ•  ์ˆ˜ ์žˆ๋Š” ์‹ ๊ธฐ์ˆ ์˜ ์ž ์žฌ๋ ฅ์„ ์‹คํ˜„ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ํšจ๊ณผ์ ์ด๊ณ  ํšจ์œจ์ ์ด๋ฉฐ ์‚ฌ๋ ค ๊นŠ์€ ๊ทœ์ œ๊ฐ€ ์ ˆ์‹คํžˆ ํ•„์š”ํ•œ ์‹œ์ ์ด๋‹ค.


Regulating the AI revolution in Asia

It is said that when merchants arrived in the port of Alexandria in antiquity, their manuscripts would be seized, taken to the cityโ€™s famous library, and copied by scribes, who would confiscate the original and graciously give the copy to the merchant.

Something of that mercenary spirit is still alive in the software developers behind the wildly successful new generative artificial intelligence (AI) programs that are rewriting the digital economy. The functionality of ChatGPT and its competitors is built on collections of text and other data that some allege has not properly been paid for. A major lawsuit from authors accusing OpenAI of systematically violating copyright to build the corpus on which programs like ChatGPT are based is only the start of a new round of litigation and regulation that will try to place limits on what is and is not permissible in AI.

But two problems complicate matters. The first is that, even more than for earlier digital innovations like the search engine, there are major first-mover advantages and economies of scale that make AI ripe for natural monopolies. An early age of antitrust suits against software makers like Microsoft, generally ending in weak settlements, did little to establish general principles for the digital economy about where to draw the line between successful innovation and anti-competitive behaviour.

The second problem is that AI has quite obvious national security applications, and if there are monopoly rents to be had, each government would prefer โ€” for security purposes as well as economic reasons โ€” that their own companies hold the dominant market position. Because of the high fixed costs of entry and increasing returns to scale, as well as the national security nexus, established players in the United States and China have the upper hand.

Given the volatile geopolitical situation and the splintering world economy, the new digital frontier has become an arena of contest between the two largest economies in the world, and that entails major risks for smaller economies, particularly in Asia.

New technologies often make existing rules obsolete, but not the values upon which they are based. The rapid spread of AI into every corner of the global economy demands new international economic rules, but they should be based on principles that have proven themselves, like international openness and transparency.

Given the centrality of the United States and China in the AI economy, there is an important role for Asian economic cooperation to play in driving the adoption of new rules of engagement for AI that address legitimate national security concerns without disadvantaging smaller economies. This explains Singaporeโ€™s proactivity in this sphere.

In this weekโ€™s lead article, excerpted from the latest East Asia Forum Quarterly, Jacob Taylor explores some of the potential features that a comprehensive system of AI governance might have. He argues that there is a need to address the tendency for governments to try to localise data through regional cooperation to ensure the free, well-regulated flow of data across national borders. This will help to lower the barriers to entry for new, smaller players in the region. There must also be a concerted effort to build capacity in communities that have been excluded from the emerging digital economy in Asia through effective financing and regulatory assistance.

Any attempt to devise new rules to govern AI will, of course, come up against the unwillingness of Washington and Beijing to cede any advantage to their geopolitical rival. The United Statesโ€™ refusal to come to the table to end the gridlock at the World Trade Organization suggests that it might be wishful thinking to imagine a comprehensive set of regulations for AI that has effective buy-in from all of the most important players. The G7 AI initiative, of which the United States is a part, does not meet this test.

As Taylor argues, โ€˜[t]here are no easy answers to questions of concentration, localisation and exclusion in AI systems. But coordinated AI governance can create incentives for diverse regional stakeholders to actively steward AI systems while increasing transparency around risks.โ€™

The state of technology is moving faster than regulators have been able to keep up with, particularly given the borderless nature of most digital transactions.

The scope for AI to reshape economies and drive growth is obvious, but effective, efficient and thoughtful regulation is desperately needed to ensure that the benefits are not monopolised or squandered by locking data behind national borders and the potential of the new technology to include vastly more people in the process of development is realised.

The EAF Editorial Board is located in the Crawford School of Public Policy, College of Asia and the Pacific, The Australian National University.

Picture

Member for

8 months 2 weeks
Real name
์ดํšจ์ •
Position
์—ฐ๊ตฌ์›
Bio
[email protected]
์ง€์‹์€ ์ „๋‹ฌํ•˜๋Š” ์ •๋ณด๊ฐ€ ์•„๋‹ˆ๋ผ, ํ•จ๊ป˜ ๊ณ ๋ฏผํ•˜๊ธฐ ์œ„ํ•ด ๋งŒ๋“ค์–ด์ง„ ์–ธ์–ด์ž…๋‹ˆ๋‹ค.

๊ด€๋ จ๊ธฐ์‚ฌ

Previous Next

์šฐ์ฃผํ•ญ๊ณต์ฒญ ๊ด€๋ จ ๋…ผ์˜ ์žฌ๊ฐœ, ์—ฐ๋‚ด ๊ทน์  ํ•ฉ์˜๋กœ โ€˜ํ•œ๊ตญํŒ NASAโ€™ ์•ž๋‹น๊ธธ๊นŒ

์šฐ์ฃผํ•ญ๊ณต์ฒญ ๊ด€๋ จ ๋…ผ์˜ ์žฌ๊ฐœ, ์—ฐ๋‚ด ๊ทน์  ํ•ฉ์˜๋กœ โ€˜ํ•œ๊ตญํŒ NASAโ€™ ์•ž๋‹น๊ธธ๊นŒ
Picture

Member for

8 months 2 weeks
Real name
๊น€๋ฏผ์ •
Position
๊ธฐ์ž
Bio
[email protected]
์˜ค๋Š˜ ๊ผญ ์•Œ์•„์•ผ ํ•  ์†Œ์‹์„ ์ „ํ•ฉ๋‹ˆ๋‹ค. ๋น ๋ฅด๊ฒŒ ์ „ํ•˜๋˜, ๊ทธ ์ „์— ์ฒœ์ฒœํžˆ ์ฝ๊ฒ ์Šต๋‹ˆ๋‹ค. ํ•ต์‹ฌ๋งŒ์„ ํŒŒ๊ณ ๋“ค๋˜, ๊ทธ ์ „์— ๋„“๊ฒŒ ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.

์ˆ˜์ •

๊ณผ๋ฐฉ์œ„, ์šฐ์ฃผํ•ญ๊ณต์ฒญ ํŠน๋ณ„๋ฒ• ์†Œ์œ„์›ํšŒ ํšŒ๋ถ€
'๋น ๋ฅธ ์ถ”์ง„' ์•ž์„ธ์šด ์—ฌ๋‹น vs '์ฒ ์ €ํ•œ ์ค€๋น„' ๊ฐ•์กฐํ•œ ์•ผ๋‹น
๊ธฐ์ˆ ยท์•ˆ๋ณด ์ž๋ฆฝ๊นŒ์ง€ '๋จผ ๊ธธ', ์šฐ์ฃผํ•ญ๊ณต์ฒญ์ด ํ•ด๋ฒ• ๋ ๊นŒ 
231206์šฐ์ฃผํ•ญ๊ณต์ฒญ

์œค์„์—ด ์ •๋ถ€๊ฐ€ ํ•ต์‹ฌ ๊ตญ์ •๊ณผ์ œ๋กœ ๋‚ด์„ธ์šด ใ€Œ์šฐ์ฃผํ•ญ๊ณต์ฒญ ์„ค์น˜ ํŠน๋ณ„๋ฒ•ใ€์˜ ์—ฐ๋‚ด ์ž…๋ฒ• ๊ฐ€๋Šฅ์„ฑ์ด ๋Œ€๋‘๋˜๊ณ  ์žˆ๋‹ค. ์˜ค๋žœ ์‹œ๊ฐ„ ๊ฒ‰๋Œ๋˜ ๊ตญํšŒ ๋…ผ์˜๊ฐ€ 5์ผ ์žฌ๊ฐœ๋˜๋ฉด์„œ๋‹ค. ์ด๋ฅธ๋ฐ” โ€˜์—ฌ์•ผ 2+2 ํ•ฉ์˜์ฒดโ€™ ์šฐ์„  ๋…ผ์˜ ๋Œ€์ƒ์œผ๋กœ ๊ผฝํžŒ ๋ฒ•์•ˆ ๊ฐ€์šด๋ฐ ํ•ด๋‹น ๋ฒ•์ด ํฌํ•จ๋œ ๋งŒํผ ๊ตญํšŒ๊ฐ€ ๊ทน์ ์ธ ํ•ฉ์˜์— ๋„๋‹ฌํ•  ๊ฒƒ์ด๋ž€ ์ „๋ง์ด ๋‚˜์˜จ๋‹ค.

ํ•ญ์šฐ์—ฐยท์ฒœ๋ฌธ์—ฐ ์ด๊ด€ ๋ฐฉ์‹ ๋‘๊ณ  ์ด๊ฒฌ

๊ตญํšŒ ๊ณผํ•™๊ธฐ์ˆ ์ •๋ณด๋ฐฉ์†กํ†ต์‹ ์œ„์›ํšŒ(๊ณผ๋ฐฉ์œ„)๋Š” ์ด๋‚  ์ „์ฒดํšŒ์˜๋ฅผ ๊ฐœ์ตœํ•ด ์šฐ์ฃผํ•ญ๊ณต์ฒญ ํŠน๋ณ„๋ฒ• ๋“ฑ ์ด 5๊ฐœ ๋ฒ•์•ˆ์„ ๊ณผํ•™๊ธฐ์ˆ ์›์ž๋ ฅ๋ฒ•์•ˆ์‹ฌ์‚ฌ์†Œ์œ„์›ํšŒ(1์†Œ์œ„)์— ์ผ๊ด„ ํšŒ๋ถ€ํ–ˆ๋‹ค. ์ง€๋‚œ 4์›” ๊ณผํ•™๊ธฐ์ˆ ์ •๋ณดํ†ต์‹ ๋ถ€๊ฐ€ ์šฐ์ฃผํ•ญ๊ณต์ฒญ ํŠน๋ณ„๋ฒ• ์ œ์ •์•ˆ์„ ๋ฐœ์˜ํ•˜๋ฉฐ ๋ณธ๊ฒฉ ๋…ผ์˜๋˜๊ธฐ ์‹œ์ž‘ํ•œ ์šฐ์ฃผํ•ญ๊ณต์ฒญ๋ฒ•์€ ์—ฌ์•ผ๊ฐ€ ๊ฒฌํ•ด์ฐจ๋ฅผ ์ขํžˆ์ง€ ๋ชปํ•˜๋ฉฐ ๊ฑฐ๋“ญ ํŒŒํ–‰์„ ๊ฒช์—ˆ๋‹ค.

์ดํ›„ ์šฐ์ฃผํ•ญ๊ณต์ฒญ๋ฒ•์€ ์•ผ๋‹น์˜ ์ ๊ทน์ ์ธ ์›€์ง์ž„ ์•„๋ž˜ 7์›” 26์ผ ์•ˆ๊ฑด์กฐ์ •์œ„์›ํšŒ(์•ˆ์กฐ์œ„)๊ฐ€ ๊ตฌ์„ฑ๋˜๋ฉด์„œ ํ•œ ์ฐจ๋ก€์˜ ์ „ํ™˜์ ์„ ๋งž์•˜๋‹ค. ํŠน์ • ์Ÿ์ ์„ ์••์ถ•์  ๋…ผ์˜ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ํ•ฉ์˜๋ฅผ ๋„์ถœํ•˜๋Š” ์•ˆ์กฐ์œ„๋Š” โ–ณ์šฐ์ฃผํ•ญ๊ณต์ฒญ๊ณผ ๊ธฐ์กด ์—ฐ๊ตฌ๊ธฐ๊ด€์˜ ๊ด€๊ณ„ ์„ค์ • โ–ณ๋Œ€์ „ยท์ „๋‚จยท๊ฒฝ๋‚จ ๋“ฑ ์šฐ์ฃผ์‚ฐ์—… ํด๋Ÿฌ์Šคํ„ฐ 3์ถ• ๊ธฐ๋Šฅ ๊ฐ•ํ™” ๋ฐฉ์•ˆ โ–ณ๊ธฐ์กด ์šฐ์ฃผํ•ญ๊ณต ์—ฐ๊ตฌ์ธ๋ ฅ ์ฒ˜์šฐ๊ฐœ์„  ๋ฌธ์ œ ๋“ฑ ๋‹ค์ˆ˜์˜ ์Ÿ์ ์—์„œ ํ•ฉ์˜๋ฅผ ์ด๋ค˜์ง€๋งŒ, ์—ฐ๊ตฌ๊ฐœ๋ฐœ(R&D) ๊ธฐ๋Šฅ์„ ์ถ”๊ฐ€ ์—ฌ๋ถ€์— ๋Œ€ํ•ด์„œ๋Š” ๋๊นŒ์ง€ ๋œป์„ ๋ชจ์œผ์ง€ ๋ชปํ•œ ์ฑ„ ์ง€๋‚œ 10์›” 23์ผ ํ•ด์‚ฐํ–ˆ๋‹ค.

์ด์— ๊ณผ๋ฐฉ์œ„๋Š” ์ด๋‚  ์ „์ฒดํšŒ์˜์—์„œ ์•ˆ์กฐ์œ„์˜ ์‹ฌ์‚ฌ ๊ฒฝ๊ณผ๋ณด๊ณ ๋ฅผ ๊ฒ€ํ† ํ•œ ํ›„ ์šฐ์ฃผํ•ญ๊ณต์ฒญ๋ฒ•์„ ์†Œ์œ„์›ํšŒ๋กœ ํšŒ๋ถ€ํ•˜๋Š” ์ ˆ์ฐจ๋ฅผ ๋ฐŸ์•˜๋‹ค. 6์ผ๋ถ€ํ„ฐ๋Š” ์—ฐ๋‚ด ์ฒ˜๋ฆฌ๋ฅผ ์œ„ํ•œ ๋ง‰ํŒ ํ•ฉ์˜๊ฐ€ ์ง„ํ–‰๋œ๋‹ค. ์ „์ฒดํšŒ์˜์— ์ถœ์„ํ•œ ์ด์ข…ํ˜ธ ๊ณผ๊ธฐ๋ถ€ ์žฅ๊ด€์€ โ€œ์ตœ๋Œ€ํ•œ ๋นจ๋ฆฌ ๋ฒ•์•ˆ์„ ํ†ต๊ณผ์‹œ์ผœ ์šฐ์ฃผํ•ญ๊ณต์ฒญ์„ ๊ฐœ์ฒญํ•ด ์šฐ์ฃผํ•ญ๊ณต ๋ถ„์•ผ์˜ ๊ฒฝ์ œยท์•ˆ๋ณด ๊ฒฝ์Ÿ๋ ฅ์„ ํ™•๋ณดํ•ด์•ผ ํ•œ๋‹คโ€๊ณ  ์—ญ์„คํ•˜๋ฉฐ โ€œ์–ด๋–ค ํ˜•ํƒœ๋กœ๋“ ์ง€ ๊ฐœ์ฒญ์„ ์•ž๋‹น๊ธธ ์ˆ˜ ์žˆ๋„๋ก ๊ณผ๋ฐฉ์œ„์›๋“ค์ด ๋œป์„ ๋ชจ์•„์ฃผ๋ฉด, ๊ณผ๊ธฐ๋ถ€๊ฐ€ ์ ๊ทน ์ง€์›ํ•˜๊ฒ ๋‹คโ€๊ณ  ๋งํ–ˆ๋‹ค.

์žฅ์ œ์› ๊ณผ๋ฐฉ์œ„์›์žฅ์€ โ€œ๊ทธ๊ฐ„ ์ด๊ฒฌ์ด ์žˆ์—ˆ๋˜ ์ฃผ์š” ์Ÿ์ ์— ๋Œ€ํ•ด์„œ๋Š” ๋งŽ์ด ์ขํ˜€์ง„ ๊ฒƒ ๊ฐ™๋‹คโ€๊ณ  ์ด๋‚  ํšŒ์˜๋ฅผ ํ‰๊ฐ€ํ•˜๋ฉฐ โ€œ๊ตญ๊ฐ€์˜ ๋ฏธ๋ž˜ ์‚ฐ์—… ๋ถ„์•ผ๋ฅผ ์œก์„ฑํ•˜๋Š” ๊ธฐํšŒ์ธ ๋งŒํผ ์†Œ์œ„์›ํšŒ ๊ตฌ์„ฑ์›๋“ค์ด ๋Œ€์Šน์  ์ฐจ์›์—์„œ ๋น ๋ฅธ ํ•ฉ์˜๋ฅผ ๋Œ์–ด๋ƒˆ์œผ๋ฉด ํ•œ๋‹คโ€๊ณ  ๋‹น๋ถ€ํ–ˆ๋‹ค.

๋‹ค๋งŒ ์ด๋‚  ์ „์ฒดํšŒ์˜์—์„œ๋Š” ํ•ญ๊ณต์šฐ์ฃผ์—ฐ๊ตฌ์›(ํ•ญ์šฐ์—ฐ)๊ณผ ์ฒœ๋ฌธ์—ฐ๊ตฌ์›(์ฒœ๋ฌธ์—ฐ)์˜ ์ด๊ด€ ๋ฐฉ์‹์„ ๋‘๊ณ  ์—ฌ์•ผ๊ฐ€ ๋˜ ํ•œ ์ฐจ๋ก€ ์˜๊ฒฌ ์ถฉ๋Œ์„ ๋นš์—ˆ๋‹ค. ๊ทธ๊ฐ„ ํ•ญ์šฐ์—ฐ๊ณผ ์ฒœ๋ฌธ์—ฐ์˜ ์šฐ์ฃผํ•ญ๊ณต์ฒญ ์†Œ์† ๊ธฐ๊ด€ํ™”์— ๋ถ€์ •์ ์ธ ์ž…์žฅ์„ ๋ณด์ด๋˜ ๊ณผ๊ธฐ์ •ํ†ต๋ถ€๊ฐ€ ์ง€๋‚œ 10์›” ๊ตญ์ •๊ฐ์‚ฌ์—์„œ ํ•ด๋‹น ์‚ฌ์•ˆ์— ๋™์˜ํ•˜๋ฉฐ ํ•ต์‹ฌ ์Ÿ์ ์ด ์‚ฌ๋ผ์ง„ ๋“ฏํ–ˆ์ง€๋งŒ, ๊ทธ ๊ตฌ์ฒด์ ์ธ ๋ฐฉ์‹์„ ๋‘๊ณ  ๋‹ค์‹œ ์ž…์žฅ์ฐจ๋ฅผ ๋ณด์ธ ๊ฒƒ์ด๋‹ค.

๊ณผ๋ฐฉ์œ„ ์•ผ๋‹น ๊ฐ„์‚ฌ ์กฐ์Šน๋ž˜ ๋”๋ถˆ์–ด๋ฏผ์ฃผ๋‹น ์˜์›์€ โ€œํ•ญ์šฐ์—ฐ๊ณผ ์ฒœ๋ฌธ์—ฐ ๋“ฑ ์†Œ์†๊ธฐ๊ด€์„ ํ•ญ๊ณต์ฒญ์œผ๋กœ ์ด๊ด€ํ•˜๋Š” ๊ฒƒ ๊ด€๋ จํ•ด์„œ๋Š” ์—ฌ๋‹น์ด ์ฃผ์žฅํ•˜๋Š” โ€˜๋ถ€์น™โ€™์—์„œ ๋‹ค๋ฃฐ ๊ฒƒ์ด ์•„๋‹ˆ๋ผ ๋ฒ•์•ˆ์˜ โ€˜๋ณธ์น™โ€™์— ์ •ํ™•ํ•œ ๊ทผ๊ฑฐ ๊ทœ์ •์„ ๋ช…์‹œํ•ด์•ผ ํ•œ๋‹คโ€๊ณ  ์ฃผ์žฅํ–ˆ๋‹ค. ๋ฐ˜๋ฉด ์—ฌ๋‹น ๊ฐ„์‚ฌ ๋ฐ•์„ฑ์ค‘ ๊ตญ๋ฏผ์˜ํž˜ ์˜์›์€ โ€œ๋จผ์ € ๋ถ€์น™์œผ๋กœ ์†๋„๊ฐ ์žˆ๊ฒŒ ์ถ”์ง„ํ•˜๊ณ  ๋‚˜์ค‘์— ๊ด€๋ จ ๋ฒ•๋ฅ ์ด ์ •๋น„๋˜๋ฉด ์žฌ์ •๋น„ํ•ด ๋ณธ์น™์— ์ถ”๊ฐ€ํ•  ์ˆ˜ ์žˆ๋‹คโ€๊ณ  ๋ฐ˜๋ฐ•ํ–ˆ๋‹ค. ๋ณธ์น™ ๊ฐœ์ •์€ ๋ถ€์น™์˜ ๊ทธ๊ฒƒ๋ณด๋‹ค ๋” ๋ณต์žกํ•œ ์ ˆ์ฐจ๊ฐ€ ์ˆ˜๋ฐ˜๋˜๋Š” ๋งŒํผ ๋ฒ•์•ˆ์˜ ์‹ ์†ํ•œ ์ฒ˜๋ฆฌ์— ๊ฑธ๋ฆผ๋Œ์ด ๋  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒŒ ์ •๋ถ€์™€ ์—ฌ๋‹น์˜ ์ฃผ์žฅ์ด๋‹ค.

์šฐ์ฃผํ•ญ๊ณต์ฒญ ํ•„์š”์„ฑ์—” ๊ณต๊ฐ, ๊ธฐ์ˆ ๋ ฅ ๋’ท๋ฐ›์นจ์€ โ€˜๋‹ค์†Œ ๋ถ€์กฑโ€™

์ „๋ฌธ๊ฐ€๋“ค์€ ์šฐ์ฃผํ•ญ๊ณต์ฒญ ์„ค๋ฆฝ์„ ํ†ตํ•ด ํ•œ๊ตญ์˜ ์šฐ์ฃผ์‚ฐ์—…์ด ๊ตญ๊ฐ€ ๊ฒฝ์ œ์˜ ๋ฏธ๋ž˜ ์„ฑ์žฅ ๋™๋ ฅ์ด ๋ผ์•ผ ํ•œ๋‹ค๋Š” ์—ฌ๋‹น์˜ ์ฃผ์žฅ์—๋Š” ๊ณต๊ฐํ•˜๋ฉด์„œ๋„ ์ด๋ฅผ ๋’ท๋ฐ›์นจํ•  ๊ธฐ์ˆ ๋ ฅ์˜ ๋ฐœ์ „์ด ์ถฉ๋ถ„ํžˆ ์ด๋ค„์ง€๊ณ  ์žˆ๋Š”์ง€์— ๋Œ€ํ•ด์„œ๋Š” ๋‹ค์†Œ ์˜๊ตฌ์‹ฌ์„ ๋“œ๋Ÿฌ๋ƒˆ๋‹ค. ์šฐ๋ฆฌ๋‚˜๋ผ๊ฐ€ ์•ˆ๋ณด ๋“ฑ ์—ฌ๋Ÿฌ ๋ถ„์•ผ์—์„œ ๋…์ž์ ์ธ ์šฐ์ฃผํ•ญ๊ณต ๊ธฐ์ˆ ๋ ฅ์„ ๊ตฌ์ถ•ํ•˜์ง€ ๋ชปํ•ด ๋ฏธ๊ตญ ๋“ฑ ์ฃผ์š”๊ตญ์˜ ์ง€์›์„ ํ•„์š”๋กœ ํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋‹ค๋ฐ˜์‚ฌ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค.

์ด๋‹ฌ 4์ผ 4ยท25 ๊ตฐ์‚ฌ์ •์ฐฐ์œ„์„ฑ 1ํ˜ธ๊ธฐ(EO/IR) ๋ฐœ์‚ฌ ์„ฑ๊ณต ์ง์ „๊นŒ์ง€ ์•ฝ 45๋…„ ๋™์•ˆ ๋ฏธ๊ตญ์— ํฌ๊ฒŒ ์˜์กดํ•ด ์˜ค๋˜ ๊ตฐ์‚ฌ์ •์ฐฐ์œ„์„ฑ ์ •๋ณด ์šด์šฉ์ด ๋Œ€ํ‘œ์  ์˜ˆ๋‹ค. ์ด์ „๊นŒ์ง€ ์šฐ๋ฆฌ ๊ตฐ์€ ์œ„ํ˜‘์ด ์˜ˆ์ƒ๋˜๋Š” ์ ์˜ ํ™œ๋™์„ ์›ํ•˜๋Š” ์‹œ๊ฐ„๊ณผ ์žฅ์†Œ์—์„œ ์ดฌ์˜ํ•˜๊ฑฐ๋‚˜ ์ด์— ๋”ฐ๋ฅธ ๋Œ€์ฒ˜ ๊ณ„ํš์„ ์ˆ˜๋ฆฝํ•˜๊ณ  ์ž„๋ฌด๋ฅผ ์ง€์‹œํ•˜๋Š” ๋“ฑ ์ผ๋ จ์˜ ๊ตฐ์‚ฌ ๋Œ€์‘ ์ฒด๊ณ„์—์„œ ๋…์ž์  ๊ถŒํ•œ์„ ๊ฐ–์ถ”์ง€ ๋ชปํ–ˆ๋‹ค. ์ด ๋•Œ๋ฌธ์— ๊ด€๋ จ ๊ตฐ์‚ฌ ํ™œ๋™์˜ ์ „ ๋‹จ๊ณ„๊ฐ€ ํ”ผ๋™์ ์ด๊ณ  ์˜์กด์ ์ผ ์ˆ˜๋ฐ–์— ์—†์œผ๋ฉฐ ์ ์‹œ์„ฑ, ์ •ํ™•์„ฑ, ์™„์ „์„ฑ์—๋„ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค๋Š” ์ง€์ ์„ ๋ฐ›์•„ ์™”๋‹ค.

์ •๋ถ€์™€ ์—ฌ๋‹น์˜ ์šฐ์ฃผํ•ญ๊ณต์ฒญ ์„ค๋ฆฝ ์ถ”์ง„์€ ์ด๊ฐ™์€ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๋ ค๋Š” ๋…ธ๋ ฅ์œผ๋กœ ํ’€์ดํ•  ์ˆ˜ ์žˆ๋‹ค. ์ „๋‹ด ๊ธฐ๊ตฌ ์„ค๋ฆฝ์„ ํ†ตํ•ด ๋ณธ๊ฒฉ์ ์ธ ํˆฌ์ž์™€ ํ™œ๋ฐœํ•œ ๊ตญ์ œ ํ˜‘๋ ฅ์„ ์ด๋Œ ์ˆ˜ ์žˆ๋‹ค๋ฉด ๋น ๋ฅธ ์‹œ์ผ ๋‚ด ์•ˆ๋ณด ์ •์ƒํ™”๋ฅผ ์ด๋ฃจ๋Š” ๊ฒƒ์€ ๋ฌผ๋ก  ๋‚˜์•„๊ฐ€ ์šฐ์ฃผํ•ญ๊ณต ์„ ๋„๊ตญ์˜ ๋ฐ˜์—ด์—๋„ ์˜ค๋ฅผ ๊ฒƒ์ด๋ผ๋Š” ์ฃผ์žฅ์ด๋‹ค. ์ด์ฃผ์ง„ ์ „ ํ•ญ์šฐ์—ฐ ์›์žฅ์€ โ€œ์šฐ์ฃผํ•ญ๊ณต์ฒญ์ด ์„ค๋ฆฝ๋˜๋ฉด ์ค‘๊ตญ์˜ 12๋ถ„์˜ 1, ๋Ÿฌ์‹œ์•„ยท์ผ๋ณธ์˜ 5๋ถ„์˜ 1, ์ธ๋„์˜ 3๋ถ„์˜ 1 ์ˆ˜์ค€์— ๋ถˆ๊ณผํ•œ ํ•œ๊ตญ์˜ ์šฐ์ฃผ๊ฐœ๋ฐœ ์˜ˆ์‚ฐ์„ ํ™•๋Œ€ํ•  ์ˆ˜ ์žˆ๋‹คโ€๋ฉฐ โ€œ์šฐ์ฃผํ•ญ๊ณต์ฒญ์€ ํ•ญ์šฐ์—ฐ๊ณผ ์ฒœ๋ฌธ์—ฐ ๋“ฑ ๊ฐ์ข… ๊ด€๋ จ ์—ฐ๊ตฌ๊ธฐ๊ด€๊ณผ ๋™๋ฐ˜ ํ˜‘๋ ฅํ•ด ์šฐ๋ฆฌ๋ฅผ ์šฐ์ฃผ ์„ ์ง„๊ตญ ๋Œ€์—ด์— ์˜ฌ๋ ค๋‹ค ๋†“์„ ๊ฒƒโ€์ด๋ผ๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

Picture

Member for

8 months 2 weeks
Real name
๊น€๋ฏผ์ •
Position
๊ธฐ์ž
Bio
[email protected]
์˜ค๋Š˜ ๊ผญ ์•Œ์•„์•ผ ํ•  ์†Œ์‹์„ ์ „ํ•ฉ๋‹ˆ๋‹ค. ๋น ๋ฅด๊ฒŒ ์ „ํ•˜๋˜, ๊ทธ ์ „์— ์ฒœ์ฒœํžˆ ์ฝ๊ฒ ์Šต๋‹ˆ๋‹ค. ํ•ต์‹ฌ๋งŒ์„ ํŒŒ๊ณ ๋“ค๋˜, ๊ทธ ์ „์— ๋„“๊ฒŒ ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.

๊ด€๋ จ๊ธฐ์‚ฌ

Previous Next

'์˜คํ”ˆAI ๋Œ€ํ•ญ๋งˆ' ๋จธ์Šคํฌ์˜ X.AI โ€œ1์กฐ3,000์–ต์› ๊ทœ๋ชจ ์ž๊ธˆ ์กฐ๋‹ฌ ์ถ”์ง„โ€

'์˜คํ”ˆAI ๋Œ€ํ•ญ๋งˆ' ๋จธ์Šคํฌ์˜ X.AI โ€œ1์กฐ3,000์–ต์› ๊ทœ๋ชจ ์ž๊ธˆ ์กฐ๋‹ฌ ์ถ”์ง„โ€
Picture

Member for

8 months 2 weeks
Real name
์ด๋™์ง„
Position
๊ธฐ์ž
Bio
[email protected]
ํ‘๋ฐฑ์˜ ์„ธ์ƒ์—์„œ ํšŒ์ƒ‰์ง€๋Œ€๋ฅผ ์ฐพ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์‚ฐ์—… ํ˜„์žฅ์„ ์ทจ์žฌํ•œ ๊ฒฝํ—˜์„ ํ†ตํ•ด IT ๊ธฐ์—…๋“ค์˜ ํ˜„์žฌ์™€ ๊ทธ ์†์— ๋‹ด๊ธธ ํ•œ๊ตญ์˜ ๋ฏธ๋ž˜๋ฅผ ์ „ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.

์ˆ˜์ •

X.AI, 2018๋…„ ์˜คํ”ˆAI ๋– ๋‚œ ๋จธ์Šคํฌ๊ฐ€ ์ƒˆ๋กญ๊ฒŒ ๋งŒ๋“  AI ์Šคํƒ€ํŠธ์—…
๋ฏธ๊ตญ SEC์— ์ตœ๋Œ€ 10์–ต ๋‹ฌ๋Ÿฌ ๊ทœ๋ชจ์˜ ์ฃผ์‹ ํˆฌ์ž์ž ๋ชจ์ง‘ ์‹ ๊ณ 
๋น…ํ…Œํฌ ์ถœ์‹  ์ธ์‚ฌ๊นŒ์ง€ ๊ฐœ๋ฐœ์— ๊ฐ€์„ธ, ์ดˆ๊ฑฐ๋Œ€ AI ํŒจ๊ถŒ ์ „์Ÿ ์‹ฌํ™”๋  ์ „๋ง
์ผ๋ก  ๋จธ์Šคํฌ ํ…Œ์Šฌ๋ผ CEO/์‚ฌ์ง„=๋ฏธ ๊ณต๊ตฐ

์ผ๋ก  ๋จธ์Šคํฌ ํ…Œ์Šฌ๋ผ ์ตœ๊ณ ๊ฒฝ์˜์ž(CEO)์˜ ์ธ๊ณต์ง€๋Šฅ(AI) ์Šคํƒ€ํŠธ์—… โ€˜X.AIโ€™๊ฐ€ ๋ฏธ ์ฆ๊ถŒ๊ฑฐ๋ž˜์œ„์›ํšŒ(SEC)์— ์ตœ๋Œ€ 10์–ต ๋‹ฌ๋Ÿฌ(์•ฝ 1์กฐ3,120์–ต์›) ๊ทœ๋ชจ์˜ ๊ณต๋ชจ๋ฅผ ์‹ ์ฒญํ–ˆ๋‹ค. X.AI๋Š” ๋จธ์Šคํฌ๊ฐ€ ์ง€๋‚œ 7์›” ์˜คํ”ˆAI์˜ ๋Œ€ํ•ญ๋งˆ๋ฅผ ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด ์„ค๋ฆฝํ•œ AI ์Šคํƒ€ํŠธ์—…์œผ๋กœ, AI ์ฑ—๋ด‡ ๊ทธ๋ก(Grok)์„ ์„ ๋ณด์ธ ๋ฐ” ์žˆ๋‹ค. ์ตœ๊ทผ์—๋Š” ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•˜๋Š” ๋ฐ ํ•„์š”ํ•œ GPU(๊ทธ๋ž˜ํ”ฝ์ฒ˜๋ฆฌ์žฅ์น˜)๋ฅผ ์ˆ˜์ฒœ ๊ฐœ ๊ฐ€๊นŒ์ด ํ™•๋ณดํ•œ ๋งŒํผ, ์˜คํ”ˆAIยท๊ตฌ๊ธ€ยท๋ฉ”ํƒ€ ๋“ฑ์ด ์ผ์œผํ‚จ ์ดˆ๊ฑฐ๋Œ€ AI ํŒจ๊ถŒ ์ „์Ÿ์— ๊ฐ€์„ธํ•  ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค.

๋จธ์Šคํฌ์˜ AI ์Šคํƒ€ํŠธ์—…, ์ฑ—๋ด‡ ๊ทธ๋ก(Grok)์œผ๋กœ ์ถœ์‚ฌํ‘œ

5์ผ(ํ˜„์ง€์‹œ๊ฐ„) CNBC ๋“ฑ ์™ธ์‹  ๋ณด๋„์— ๋”ฐ๋ฅด๋ฉด X.AI๋Š” ์•ž์„œ 4๋ช…์˜ ํˆฌ์ž์ž๋กœ๋ถ€ํ„ฐ ์•ฝ 1์–ต3,500๋งŒ ๋‹ฌ๋Ÿฌ(์•ฝ 1,770์–ต์›)๋ฅผ ์œ ์น˜ํ–ˆ์œผ๋ฉฐ, ์ง€๋‚œ 11์›” 29์ผ ์ฒซ ๋ฒˆ์งธ ๋งค๊ฐ์ด ์ด๋ค„์ง„ ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์กŒ๋‹ค. X.AI๋Š” โ€œ์šฐ์ฃผ์˜ ์ง„์ •ํ•œ ๋ณธ์งˆ์„ ์ดํ•ดํ•œ๋‹คโ€๋Š” ์ทจ์ง€๋กœ ๋จธ์Šคํฌ๊ฐ€ ์ง€๋‚œ 7์›” ์„ค๋ฆฝํ•œ ์Šคํƒ€ํŠธ์—…์ด๋‹ค. ์ง€๋‚œ ๋‹ฌ์—๋Š” โ€˜์€ํ•˜์ˆ˜๋ฅผ ์—ฌํ–‰ํ•˜๋Š” ํžˆ์น˜ํ•˜์ด์ปค๋ฅผ ์œ„ํ•œ ์•ˆ๋‚ด์„œโ€™๋ฅผ ๋ชจ๋ธ๋กœ ํ•œ ์ฑ—๋ด‡ ๊ทธ๋ก(Grok)์„ ์ถœ์‹œํ•œ ๋ฐ” ์žˆ๋‹ค.

๊ทธ๋ก์€ 2๊ฐœ์›”์˜ ๋จธ์‹ ๋Ÿฌ๋‹ ๊ต์œก์„ ํ†ตํ•ด ๋ฐ๋ท”ํ–ˆ๊ณ , ์ธํ„ฐ๋„ท์—์„œ ์‹ค์‹œ๊ฐ„ ์ง€์‹์„ ํ•™์Šตํ–ˆ๋‹ค. X.AI๋Š” ๊ทธ๋ก์— ๋Œ€ํ•ด โ€œ์กฐ๊ธˆ์€ ์žฌ์น˜ ์žˆ๋Š” ๋‹ต์„ ํ•˜๋„๋ก ์„ค๊ณ„๋๊ณ  ๋ฐ˜ํ•ญ์ ์ธ ์„ฑํ–ฅ์„ ๊ฐ–๊ณ  ์žˆ๋‹คโ€๋ฉด์„œ โ€œ์œ ๋จธ๋ฅผ ์‹ซ์–ดํ•œ๋‹ค๋ฉด ์‚ฌ์šฉํ•˜์ง€ ๋ง๋ผโ€๊ณ  ์†Œ๊ฐœํ–ˆ๋‹ค. ์•„์šธ๋Ÿฌ โ€œ๋Œ€๋ถ€๋ถ„์˜ ๋‹ค๋ฅธ AI ์‹œ์Šคํ…œ์ด ๊ฑฐ๋ถ€ํ•˜๋Š” ์–ด๋ ค์šธ ์งˆ๋ฌธ์—๋„ ๋‹ตํ•  ์ˆ˜ ์žˆ๋‹คโ€๊ณ  ์ž์‹ ๊ฐ์„ ๋‚ด๋น„์ณค๋‹ค.

๊ทธ๋ก์€ ์˜คํ”ˆAI์˜ ์ฑ—GPT, ๊ตฌ๊ธ€ ๋ฐ”๋“œ, ์•คํŠธ๋กœํ”ฝ ํด๋กœ๋“œ ์ฑ—๋ด‡ ๋“ฑ๊ณผ์˜ ๊ฒฝ์Ÿ์„ ๋ชฉํ‘œ๋กœ ํ•˜๊ณ  ์žˆ๋‹ค. ๋จธ์Šคํฌ๋Š” ์ง€๋‚œ 7์›” ํ…Œ์Šฌ๋ผ ์‹ค์  ๋ฐœํ‘œ ๋‹น์‹œ X.AI๊ฐ€ ํ…Œ์Šฌ๋ผ์˜ ๋น„์ฆˆ๋‹ˆ์Šค์™€ ๊ฒฝ์Ÿํ•  ์ˆ˜ ์žˆ๋Š”์ง€ ๊ถ๊ธˆํ•ดํ•˜๋Š” ์• ๋„๋ฆฌ์ŠคํŠธ๋“ค์—๊ฒŒ โ€œ์„ธ๊ณ„ ์ตœ๊ณ ์˜ AI ์—”์ง€๋‹ˆ์–ด์™€ ๊ณผํ•™์ž๋“ค ์ผ๋ถ€๋Š” ํ…Œ์Šฌ๋ผ ๊ฐ™์€ ์ด๋ฏธ ํ™•๋ฆฝ๋œ ๋Œ€๊ธฐ์—…์— ํ•ฉ๋ฅ˜ํ•˜๊ธฐ ๋ณด๋‹ค๋Š” ์„ฑ์žฅ์„ฑ ์ธก๋ฉด์—์„œ ๊ณผ์‹ค์ด ํฐ ์Šคํƒ€ํŠธ์—…์„ ์„ ํ˜ธํ–ˆ๋‹คโ€๋ฉฐ โ€œ๋‹ค๋ฅธ ๊ณณ์—์„œ ์ผํ•˜๋Š” ๊ฒƒ๋ณด๋‹ค ์ œ๊ฐ€ ์šด์˜ํ•˜๋Š” ์Šคํƒ€ํŠธ์—…์ด ๋” ๋‚ซ๋‹ค๊ณ  ์ƒ๊ฐํ•ด X.AI๋ฅผ ๋งŒ๋“ค์—ˆ๋‹คโ€๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

ํ•œํŽธ ์˜ฌํ•ด ์ดˆ ๋จธ์Šคํฌ๋Š” ๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•˜๋Š” ๋ฐ ํ•„์š”ํ•œ ์นฉ์ธ ์ˆ˜์ฒœ ๊ฐœ์˜ ๊ณ ์„ฑ๋Šฅ GPU๋ฅผ ์—”๋น„๋””์•„๋กœ๋ถ€ํ„ฐ ํ™•๋ณดํ•œ ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์กŒ๋‹ค. ๋จธ์Šคํฌ๋Š” โ€œ๊ทธ๋ก์€ ์ผ๋ฐ˜์ ์ธ GPT์™€ ๋‹ฌ๋ฆฌ ๊ฐ€์žฅ ์ตœ์‹  ์ •๋ณด๋“ค์„ ๊ฐ–์ถ”๊ณ  ์žˆ๋‹คโ€๋ฉฐ โ€œ์ด AI ์ฑ—๋ด‡์€ ๋Œ€๊ทœ๋ชจ์–ธ์–ด๋ชจ๋ธ(LLM) ๊ธฐ๋ฐ˜์œผ๋กœ ์ œ์ž‘๋œ ๋งŒํผ ์ˆ˜ํ•™ ๋ฌธ์ œ ํ’€์ด, ํŒŒ์ด์ฌ ์ฝ”๋”ฉ ์ž‘์—… ๋“ฑ ๋ช‡๋ช‡ ๋ถ„์•ผ์—์„œ๋Š” ํƒ€ AI ์ฑ—๋ด‡ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ๋Šฅ๊ฐ€ํ•œ๋‹คโ€๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค.

X.AI๊ฐ€-๊ณต๊ฐœํ•œ-๋Œ€ํ™”ํ˜•-์ธ๊ณต์ง€๋Šฅ-๊ทธ๋ก-AIGrok-AI์˜-์˜ˆ์‹œ์‚ฌ์ง„์ผ๋ก -๋จธ์Šคํฌ-์—‘์Šค
X.AI๊ฐ€ ๊ณต๊ฐœํ•œ ๋Œ€ํ™”ํ˜• ์ธ๊ณต์ง€๋Šฅ ๊ทธ๋ก AI์˜ ์˜ˆ์‹œ/์‚ฌ์ง„=์ผ๋ก  ๋จธ์Šคํฌ ์—‘์Šค

์˜คํ”ˆAI ๋– ๋‚˜ ์ƒˆ๋กญ๊ฒŒ AI ์Šคํƒ€ํŠธ์—… ์„ธ์šด ๋จธ์Šคํฌ, ์„ค๋ฆฝ ๋ฐฐ๊ฒฝ์€?

์‚ฌ์‹ค ๋จธ์Šคํฌ๋Š” 2015๋…„ ์ƒ˜ ์•ŒํŠธ๋งŒ ๋“ฑ๊ณผ ํ•จ๊ป˜ ์˜คํ”ˆAI๋ฅผ ๊ณต๋™ ์ฐฝ์—…ํ•  ์ •๋„๋กœ AI ์‚ฐ์—…์—๋„ ์ง€๋Œ€ํ•œ ๊ด€์‹ฌ์„ ๋ณด์—ฌ์™”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ 2018๋…„ 2์›” ์˜คํ”ˆAI๊ฐ€ ๋ชจ๋“  AI ์ •๋ณด๋ฅผ ์˜คํ”ˆ์†Œ์Šคํ™”ํ•˜๊ฒ ๋‹ค๋˜ ๋‹น์ดˆ ์„ค๋ฆฝ ์ทจ์ง€์™€ ๋‹ค๋ฅด๊ฒŒ ์ˆ˜์ตํ™”๋ฅผ ์ถ”๊ตฌํ•˜์ž ํšŒ์‚ฌ๋ฅผ ๋– ๋‚ฌ๋‹ค. ๋‹น์‹œ ๋จธ์Šคํฌ๋Š” ๋ฏธ๊ตญ ์–ธ๋ก  ๋งค์ฒด์™€์˜ ์ธํ„ฐ๋ทฐ์—์„œ โ€œ๋ˆ„๊ตฌ๋‚˜ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์˜คํ”ˆ์†Œ์Šค๋ฅผ ์ œ๊ณตํ•˜๋Š” ๋น„์˜๋ฆฌ ๊ธฐ์—…์ด ๋˜๊ธธ ๋ฐ”๋žฌ๋˜ ๊ธฐ์—…์ด ์ด์ œ๋Š” ์ฐฝ์—… ์ •์‹ ๊ณผ ๋ฐ˜๋Œ€๋กœ ํ์‡„์  AI ๊ฐœ๋ฐœ ์ƒํƒœ๊ณ„๋กœ ์ „ํ™˜ํ•ด ์ˆ˜์ต์„ ์ถ”๊ตฌํ•˜๋Š” ๊ธฐ์—…์ด ๋๋‹คโ€๋ฉฐ โ€œ์˜คํ”ˆAI๋Š” ๋งˆ์ดํฌ๋กœ์†Œํ”„ํŠธ์˜ ํˆฌ์ž๋ฅผ ๋ฐ›์•„๋“ค์ด๋ฉด์„œ ์˜๋ฆฌ๋ฅผ ์ถ”๊ตฌํ•˜๋Š” ์กฐ์ง์œผ๋กœ ์ „๋ฝํ–ˆ๊ณ , ์ด์ œ ๋‚˜์˜ ๊ด€์‹ฌ์˜ ๋Œ€์ƒ์—์„œ ๋ฉ€์–ด์กŒ๋‹คโ€๊ณ  ๋ฐํ˜”๋‹ค.

์ดํ›„ ๋จธ์Šคํฌ๋Š” ์ง€๋‚œ 7์›” ์˜คํ”ˆAI์˜ ๋Œ€ํ•ญ๋งˆ๋ฅผ ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด โ€˜X.AIโ€™๋ฅผ ์„ธ์› ๊ณ , ๋ถˆ๊ณผ 4๊ฐœ์›” ๋’ค์— ์„ ๋ณด์ธ ์ฒซ ์ฑ—๋ด‡ ์„œ๋น„์Šค๊ฐ€ ๋ฐ”๋กœ ๊ทธ๋ก์ด๋‹ค. ์ด์— ์ผ๊ฐ์—์„  ๋จธ์Šคํฌ๊ฐ€ ์˜คํ”ˆAI์—์„œ ์˜ํ–ฅ๋ ฅ์„ ๋ฐœํœ˜ํ•˜์ง€ ๋ชปํ•˜๊ฒŒ ๋˜๋ฉด์„œ ํšŒ์‚ฌ๋ฅผ ๋– ๋‚ฌ๋‹ค๋Š” ์ฃผ์žฅ๋„ ๋‚˜์˜จ๋‹ค. ์ต๋ช…์„ ์š”๊ตฌํ•œ ํ˜„์ง€ ์—…๊ณ„ ๊ด€๊ณ„์ž๋Š” โ€œ๋จธ์Šคํฌ๊ฐ€ ์•ŒํŠธ๋งŒ์—๊ฒŒ โ€˜์˜คํ”ˆAI์˜ ๊ธฐ์ˆ ๋ ฅ์ด ๊ตฌ๊ธ€์— ๋’ค์ณ์ ธ ์žˆ๋‹คโ€™๋ฉฐ ์ž์‹ ์ด ์ง€ํœ˜๋ด‰์„ ์žก๊ฒ ๋‹ค๊ณ  ์ œ์•ˆํ–ˆ์ง€๋งŒ, ์•ŒํŠธ๋งŒ์„ ๋น„๋กฏํ•œ ๋‹ค๋ฅธ ์ฐฝ์—…์ž ๋ชจ๋‘๊ฐ€ ์ด๋ฅผ ๊ฑฐ์ ˆํ–ˆ๋‹คโ€๋ฉฐ โ€œ์ด ๋•Œ๋ฌธ์— ๋จธ์Šคํฌ๊ฐ€ ์˜คํ”ˆAI๋ฅผ ๋‚˜์™”๊ณ , ๊ฒฐ๊ตญ ๊ทธ๊ฐ€ ์˜คํ”ˆAI์— ์ง€์›ํ•˜๊ฒ ๋‹ค๋˜ 10์–ต ๋‹ฌ๋Ÿฌ ์ง€์› ์ž๊ธˆ๋„ ๋ฌด์‚ฐ๋˜๊ณ  ๋ง์•˜๋‹คโ€๊ณ  ์ „ํ–ˆ๋‹ค.

ํ•œํŽธ X.AI๋Š” ๋…๋ฆฝ์ ์ธ AI ์—ฐ๊ตฌ๊ฐœ๋ฐœ ๊ธฐ์—…์ด์ง€๋งŒ, ๋จธ์Šคํฌ๊ฐ€ ์ด๋„๋Š” ํ…Œ์Šฌ๋ผ์™€ ์—‘์Šค ๋“ฑ์˜ ๊ธฐ์—…๋“ค๊ณผ๋„ ํ˜‘๋ ฅํ•  ์˜ˆ์ •์ด๋‹ค. ์—ฌ๊ธฐ์— ๋”ฅ๋งˆ์ธ๋“œ(DeepMind)์™€ ์˜คํ”ˆAI, ๊ตฌ๊ธ€ ๋ฆฌ์„œ์น˜, ๋งˆ์ดํฌ๋กœ์†Œํ”„ํŠธ ๋ฆฌ์„œ์น˜ ์ถœ์‹  ์ธ์‚ฌ๋“ค๊นŒ์ง€ X.AI ๊ฐœ๋ฐœ์— ๊ฐ€์„ธํ•œ ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ง€๋ฉด์„œ ๊ธ€๋กœ๋ฒŒ AI ๊ธฐ์ˆ ํŒจ๊ถŒ ๊ฒฝ์Ÿ์ด ์‹ฌํ™”๋  ์ „๋ง์ด๋‹ค.

Picture

Member for

8 months 2 weeks
Real name
์ด๋™์ง„
Position
๊ธฐ์ž
Bio
[email protected]
ํ‘๋ฐฑ์˜ ์„ธ์ƒ์—์„œ ํšŒ์ƒ‰์ง€๋Œ€๋ฅผ ์ฐพ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์‚ฐ์—… ํ˜„์žฅ์„ ์ทจ์žฌํ•œ ๊ฒฝํ—˜์„ ํ†ตํ•ด IT ๊ธฐ์—…๋“ค์˜ ํ˜„์žฌ์™€ ๊ทธ ์†์— ๋‹ด๊ธธ ํ•œ๊ตญ์˜ ๋ฏธ๋ž˜๋ฅผ ์ „ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.

๊ด€๋ จ๊ธฐ์‚ฌ

Previous Next

ๆ–ฐ ํˆฌ์ž ๊ธฐ๋ฒ• ๋„์ž… ๋‚˜์„  ์ •๋ถ€, '๊ฒฝ์ง'๋œ ้Ÿ“ ๋ฒค์ฒ˜์‹œ์žฅ ํ’€์–ด๋‚ด๊ธฐ ์œ„ํ•ด์„ 

ๆ–ฐ ํˆฌ์ž ๊ธฐ๋ฒ• ๋„์ž… ๋‚˜์„  ์ •๋ถ€, '๊ฒฝ์ง'๋œ ้Ÿ“ ๋ฒค์ฒ˜์‹œ์žฅ ํ’€์–ด๋‚ด๊ธฐ ์œ„ํ•ด์„ 
Picture

Member for

8 months 2 weeks
Real name
๋ฐ•์ฐฝ์ง„
Position
์—ฐ๊ตฌ์›
Bio
[email protected]
์ง€๊ทผ๊ฑฐ๋ฆฌ๋ฅผ ๋น„์ถ”๋Š” ๋“ฑ๋ถˆ์€ ์•ž์„ ํ–ฅํ•  ๋•Œ ๋น„๋กœ์†Œ ์ œ๋น›์„ ๋ฐœํ•˜๋Š” ๋ฒ•์ž…๋‹ˆ๋‹ค. ๊ณผ๊ฑฐ๋กœ ๋ง๋ฏธ์•”์•„ ๋‚˜์•„๊ฐ€์•ผ ํ•  ๋ฐฉํ–ฅ์„ฑ์„ ๋น„์ถœ ์ˆ˜ ์žˆ๋„๋ก ๋…ธ๋ ฅํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.

์ˆ˜์ •

๋ฒค์ฒ˜ํˆฌ์ž ์‹œ์žฅ ์ด‰์ง„ ์ •์ฑ… ์‹œํ–‰, ๊ตญ๋‚ด ๋ฒค์ฒ˜์‹œ์žฅ ์ˆจํ†ต ํŠธ์ด๋‚˜
์‹œ์˜์„ฑ ์ค‘์š”ํ•œ ๋ฒค์ฒ˜์ •์ฑ…, "๋ฏผ๊ฐ„์ž๋ณธ ํ‡ดํ™”ํ•˜๋‹ˆ ์œ ์—ฐ์„ฑ ๋–จ์–ด์ ธ"
๋ฏผ๊ฐ„ํˆฌ์ž ๊ฐ€๋กœ๋ง‰๋Š” ๊ทœ์ œ ํŒŒํŽธํ™”, ๋ฒ•๋ฅ  ์žฌ์ •๋น„ ์‹œ๊ฐ„ ํ•„์š”ํ•  ๋“ฏ
ํˆฌ์ž์กฐ๊ฑด๋ถ€-์œต์ž-๊ตฌ์กฐ๋„

์ตœ๊ทผ ํˆฌ์ž์กฐ๊ฑด๋ถ€ ์œต์ž, VC(๋ฒค์ฒ˜์บํ”ผํƒˆ) ์ง์ ‘ํˆฌ์ž ํŠน๋ณ„๋ณด์ฆ ๋“ฑ ๋ฒค์ฒ˜ํˆฌ์ž ์‹œ์žฅ์„ ์ด‰์ง„ํ•  ์ƒˆ๋กœ์šด ํˆฌ์ž ๊ธฐ๋ฒ•์ด ์†์† ๋“ฑ์žฅํ•˜๊ธฐ ์‹œ์ž‘ํ–ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์•ž์œผ๋กœ ๊ตญ๋‚ด ๋ฒค์ฒ˜์‹œ์žฅ์—์„œ๋„ ๋‹ค์–‘ํ•œ ์šด์šฉ ์ „๋žต์ด ๊ฐ€๋Šฅํ•ด์งˆ ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค. ๋‹ค๋งŒ ๊ตญ๋‚ด ๋ฒค์ฒ˜ํˆฌ์ž์˜ ์ค‘์‹ฌ์ด ์ค‘์•™์ •๋ถ€๋ผ๋Š” ์ ์€ ๊ตญ๋‚ด ์‹œ์žฅ์˜ ์—ฌ์ „ํ•œ ์ˆ™์ œ๋กœ ๋‚จ์•˜๋‹ค. ๋‹น์žฅ ์ด๋ฒˆ ํˆฌ์ž์กฐ๊ฑด๋ถ€ ์œต์ž ์ œ๋„ ๋„์ž… ๋˜ํ•œ ์ •์ฑ…์‹œ์ฐจ๊ฐ€ ๊ทผ 3๋…„์— ๋‹ฌํ–ˆ์Œ์„ ๊ณ ๋ คํ•˜๋ฉด, ๋ฏผ๊ฐ„์ž๋ณธ ์œก์„ฑ์ด ๋ณด๋‹ค ์‹œ๊ธ‰ํžˆ ํ•„์š”ํ•  ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค.

์ค‘๊ธฐ๋ถ€, ํˆฌ์ž์กฐ๊ฑด๋ถ€ ์œต์ž ์‚ฌ์—… ๊ฐœ์‹œ

5์ผ ๋ฒค์ฒ˜ํˆฌ์ž์—…๊ณ„์— ๋”ฐ๋ฅด๋ฉด ์ค‘์†Œ๋ฒค์ฒ˜๊ธฐ์—…๋ถ€๋Š” ๋ฒค์ฒ˜ํˆฌ์ž์ด‰์ง„๋ฒ• ๊ฐœ์ •์•ˆ ์‹œํ–‰์— ๋”ฐ๋ผ ๋‚ด๋…„๋ถ€ํ„ฐ ํˆฌ์ž์กฐ๊ฑด๋ถ€ ์œต์ž ์‚ฌ์—…์„ ๊ฐœ์‹œํ•œ๋‹ค. ์ค‘๊ธฐ๋ถ€๋Š” ์ค‘์†Œ๋ฒค์ฒ˜๊ธฐ์—…์ง„ํฅ๊ณต๋‹จ์„ ํ†ตํ•ด ๋‚ด๋…„๋ถ€ํ„ฐ 500์–ต์› ๊ทœ๋ชจ๋กœ ์‚ฌ์—…์„ ๊ฐœ์‹œํ•  ์˜ˆ์ •์ด๋‹ค. ํˆฌ์ž์กฐ๊ฑด๋ถ€ ์œต์ž๋Š” ๋ฒค์ฒ˜ํˆฌ์ž๋ฅผ ๋ฐ›์€ ์ƒํƒœ์—์„œ ํ›„์† ํˆฌ์ž์œ ์น˜ ๊ฐ€๋Šฅ์„ฑ์ด ํฐ ๊ธฐ์—…์— ์ €๋ฆฌ๋กœ ์œต์ž๋ฅผ ์ง€์›ํ•˜๋Š” ๋Œ€์‹  ์†Œ์•ก์˜ ์ง€๋ถ„ ์ธ์ˆ˜๊ถŒ์„ ๋ฐ›๋Š” ์ œ๋„๋‹ค. ์ด๋ฅผ ๋ณธ๊ฒฉ ์‹œํ–‰ํ•˜๊ธฐ ์œ„ํ•ด ์ค‘๊ธฐ๋ถ€๋Š” 'ํˆฌ์ž์กฐ๊ฑด๋ถ€ ์œต์ž ๊ณ„์•ฝ ์šด์˜ ๊ทœ์ •'์„ ์ œ์ •ํ•˜๊ณ  ์‹ ์ฃผ ๋ฐฐ์ • ํ•œ๋„๋ฅผ ์ตœ๋Œ€ 5%๋กœ ๊ทœ์ •ํ–ˆ๋‹ค. VC์˜ ์Šคํƒ€ํŠธ์—… ์ง์ ‘ ํˆฌ์ž๋ฅผ ์žฅ๋ คํ•˜๊ธฐ ์œ„ํ•œ ์ œ๋„๋„ ๋‚ด๋…„๋ถ€ํ„ฐ ์‹ค์‹œ๋œ๋‹ค. ์ค‘๊ธฐ๋ถ€๋Š” ํ˜„์žฌ ๊ธฐ์ˆ ๋ณด์ฆ๊ธฐ๊ธˆ๊ณผ ํ•จ๊ป˜ ๋ณด์ฆ ์šด์šฉ ์„ธ๋ถ€ ์ง€์นจ์„ ์ˆ˜๋ฆฝ ์ค‘์ด๋‹ค. ํ˜„์žฌ๋กœ์„œ ์ค‘๊ธฐ๋ถ€๋Š” VC๊ฐ€ ์Šคํƒ€ํŠธ์—…์— ์ง์ ‘ ํˆฌ์žํ•˜๊ธฐ ์œ„ํ•ด ์€ํ–‰ ๋“ฑ์—์„œ ์ž๊ธˆ์„ ๋นŒ๋ฆด ๊ฒฝ์šฐ ์œต์ž๊ธˆ์˜ 80%๊นŒ์ง€ ์ตœ๋Œ€ 50์–ต์› ํ•œ๋„์—์„œ ๊ธฐ์ˆ ๋ณด์ฆ๊ธฐ๊ธˆ์ด ๋ณด์ฆํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๊ฒ ๋‹จ ๊ณ„ํš์ด๋‹ค.

๋ฒค์ฒ˜ํˆฌ์ž์‹œ์žฅ์—์„  ์ƒˆ๋กœ์šด ์ œ๋„ ๋„์ž…์œผ๋กœ ์ธํ•ด ๋‹ค์–‘ํ•œ ์„ฑ๊ฒฉ์˜ ์ž๊ธˆ์ด ์‹œ์žฅ์— ์œ ์ž…๋  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€ํ•˜๊ณ  ์žˆ๋‹ค. ๋‹จ์ˆœ ํˆฌ์ž ๋ชฉ์ ์˜ ์žฌ์›์„ ๋„˜์–ด ์ •์ฑ…๊ธฐ๊ด€ ์ค‘์‹ฌ์˜ ์œต์žยท๋ณด์ฆ ๋“ฑ ์žฅ๊ธฐ ์„ฑ๊ฒฉ ์ž๊ธˆ์ด ์„ž์ด๋Š” ๋งŒํผ ํˆฌ์ž ์ „๋žต ์—ญ์‹œ ๋‹ค๋ณ€ํ™”ํ•  ๊ฒƒ์ด๋ž€ ์ „๋ง์ด๋‹ค. ํŠนํžˆ ์ตœ๊ทผ ๊ธฐ์—…๊ฐ€์น˜ ํ•˜๋ฝ ๋“ฑ์œผ๋กœ ์‹ ๊ทœ ํˆฌ์ž๊ฐ€ ์‰ฝ์‚ฌ๋ฆฌ ์ด๋ค„์ง€์ง€ ์•Š๋Š” ์ƒํ™ฉ์—์„œ ์œ ์šฉํ•œ ์˜ต์…˜์ด ๋  ๊ฒƒ์ด๋ผ๋Š” ๊ธฐ๋Œ€๊ฐ์ด ํฌ๋‹ค.

์˜ค๋Š” 21์ผ๋ถ€ํ„ฐ ์กฐ๊ฑด๋ถ€์ง€๋ถ„์ „ํ™˜๊ณ„์•ฝ์ด ํ—ˆ์šฉ๋œ๋‹ค๋Š” ์ ๋„ ํ˜ธ์žฌ๋‹ค. ์กฐ๊ฑด๋ถ€์ง€๋ถ„์ „ํ™˜๊ณ„์•ฝ์ด๋ž€ ๊ธฐ์—…๊ฐ€์น˜ ์‚ฐ์ •์ด ์–ด๋ ค์šด ์Šคํƒ€ํŠธ์—…์— ์šฐ์„  ์œต์ž๋ฅผ ์ œ๊ณตํ•˜๊ณ  ํ›„์† ํˆฌ์ž๋ฅผ ์œ ์น˜ํ•  ๊ฒฝ์šฐ ์ „ํ™˜์‚ฌ์ฑ„๋ฅผ ๋ฐœํ–‰ํ•˜๋Š” ๋ฐฉ์‹์„ ๋œปํ•˜๋Š”๋ฐ, ์ด๋Š” ์•ž์„œ ๋„์ž…๋œ ์กฐ๊ฑด๋ถ€์ง€๋ถ„์ธ์ˆ˜๊ณ„์•ฝ(SAFE)๊ณผ ์œ ์‚ฌํ•˜์ง€๋งŒ ๋งŒ๊ธฐ๊ฐ€ ์กด์žฌํ•˜๊ณ  ์ฑ„๊ถŒ์„ฑ ์ž๊ธˆ์ด๋ผ๋Š” ์ ์—์„œ ํˆฌ์ž์ž์—๊ฒŒ ๋ณด๋‹ค ์œ ๋ฆฌํ•œ ๊ณ„์•ฝ์œผ๋กœ ๊ผฝํžŒ๋‹ค. VC๊ฐ€ ์„ค๋ฆฝํ•œ ํˆฌ์ž๋ชฉ์ ํšŒ์‚ฌ(SPC)๊ฐ€ ๋Œ€์ถœ์„ ๋ฐ›๋Š” ๊ฒŒ ๊ฐ€๋Šฅํ•ด์ง€๋ฉด์„œ ์‹œ์žฅ ์œ ์—ฐ์„ฑ์ด ๋Š˜์—ˆ๋‹จ ํ‰๊ฐ€๋„ ๋‚˜์˜จ๋‹ค. ์•ž์œผ๋กœ ๋Œ€๊ทœ๋ชจ ํˆฌ์ž๋Š” ๋ฌผ๋ก  M&A๋ฅผ ์›ํ•˜๋Š” ์ „๋žต์ ํˆฌ์ž์ž(SI)๊ฐ€ SPC ์ง€๋ถ„์„ ๋ณด์œ ํ•˜๋Š” ๊ฒƒ๋„ ํ—ˆ์šฉ๋˜๋Š” ๋งŒํผ ๋‹ค์–‘ํ•œ ์šด์šฉ ์ „๋žต์ด ๊ฐ€๋Šฅํ•ด์งˆ ์ „๋ง์ด๋‹ค.

์ •์ฑ…์‹œ์ฐจ 3๋…„? ๊ฒฝ์ง๋œ ้Ÿ“ ๋ฒค์ฒ˜ํˆฌ์ž ์‹œ์žฅ

ํˆฌ์ž์กฐ๊ฑด๋ถ€ ์œต์ž ์ œ๋„ ๋„์ž… ์ถ”์ง„ ๋…ผ์˜๋Š” ์ง€๋‚œ 2021๋…„๋ถ€ํ„ฐ ์ด์–ด์ ธ ์™”๋‹ค. ๊ธฐ์ˆ ๋ ฅ๋งŒ ์žˆ๊ณ  ๋‹ด๋ณด๊ฐ€ ์—†๋Š” ์Šคํƒ€ํŠธ์—…์ด๋‚˜ ๋ฒค์ฒ˜๊ธฐ์—…์ด VC๋กœ๋ถ€ํ„ฐ ํˆฌ์ž๋ฅผ ๋ฐ›์„ ๋•Œ ์ฐฝ์—…์ž ์ง€๋ถ„์ด ํฌ์„๋˜๋Š” ๋ฌธ์ œ๋ฅผ ํƒ€ํŒŒํ•˜๊ฒ ๋‹จ ์ทจ์ง€์—์„œ์˜€๋‹ค. ์‹ค์ œ ์ด ๊ฐ™์€ ๋ฌธ์ œ์ ์œผ๋กœ ์ธํ•ด ์ฐฝ์—…์ž๋Š” VC๋กœ๋ถ€ํ„ฐ์˜ ๋Œ€๊ทœ๋ชจ ํˆฌ์ž๋ฅผ ๊บผ๋ฆฌ๊ฒŒ ๋˜๊ณ  ์ด๋กœ ์ธํ•ด ์œ ๋Šฅํ•œ ์Šคํƒ€ํŠธ์—…์ด๋‚˜ ๋ฒค์ฒ˜๊ธฐ์—…์ด ์œ ๋‹ˆ์ฝ˜(๊ธฐ์—…๊ฐ€์น˜ 1์กฐ์› ์ด์ƒ์˜ ๋น„์ƒ์žฅ ๊ธฐ์—…)์œผ๋กœ ์„ฑ์žฅํ•˜๋Š” ๋ฐ ๋ฐœ๋ชฉ์ด ๋ถ™์žกํžˆ๋Š” ๊ฒฝํ–ฅ์ด ์ ์ง€ ์•Š์•˜๋‹ค. ๋‹น์‹œ ์ค‘๊ธฐ๋ถ€ ๊ด€๊ณ„์ž๋Š” "๋ฌดํ•œ ์ž ์žฌ๋ ฅ์„ ๋ณด์œ ํ•˜๊ณ  ์žˆ์ง€๋งŒ ๊ฝƒ์„ ํ”ผ์šฐ์ง€ ๋ชปํ•˜๊ณ  ์‚ฌ์žฅ๋˜๋Š” ๋ฒค์ฒ˜๋“ค์ด ๋งŽ๋‹ค"๋ฉฐ "์œ ๋‹ˆ์ฝ˜์œผ๋กœ ์„ฑ์žฅํ•  ์ˆ˜ ์žˆ๋„๋ก ์ •๊ตํ•œ ๋งž์ถคํ˜• ์ •์ฑ…์ด ํ•„์š”ํ•˜๋‹ค๋Š” ํŒ๋‹จ ์•„๋ž˜ ์ œ๋„ ๋„์ž… ์ถ”์ง„์„ ๊ธฐํšํ•œ ๊ฒƒ"์ด๋ผ๊ณ  ์„ค๋ช…ํ–ˆ๋‹ค. "๊ธˆ์œต๊ธฐ๊ด€ ์ž…์žฅ์—์„œ๋„ ํ›„์† ํˆฌ์ž ๊ฐ€๋Šฅ์„ฑ์ด ํฐ ๋ฒค์ฒ˜์— ๋Œ€์ถœ์„ ํ•ด์ค˜ ํšŒ์ˆ˜ ๊ฐ€๋Šฅ์„ฑ์„ ๋†’์ด๊ณ  ๋™์‹œ์— ์ง€๋ถ„์ธ์ˆ˜๊ถŒ์„ ํ†ตํ•ด ๊ธฐ์—…์ด ์„ฑ์žฅํ–ˆ์„ ๋•Œ ๊ธˆ๋ฆฌ๋ณด๋‹ค ๋†’์€ ์ด์ต์„ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋Š” ๋งŒํผ ํฐ ์žฅ์•  ์—†์ด ์ œ๋„ ๋„์ž…์ด ๊ฐ€๋Šฅํ•  ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค"๊ณ  ๋ง๋ถ™์ด๊ธฐ๋„ ํ–ˆ๋‹ค.

๋‹ค๋งŒ ๊ด€๋ จ ์ œ๋„์˜ ๊ตญ๋ฌดํšŒ์˜ ์˜๊ฒฐ์ด ์ด๋ค„์ง„ ์‹œ์ ์€ ์ œ๋„ ๋„์ž… ๋…ผ์˜๊ฐ€ ์‹œ์ž‘๋œ ์ง€ 2๋…„์—ฌ๊ฐ€ ์ง€๋‚œ ์ง€๋‚œ 6์›”๊ป˜์˜€๋‹ค. ์ด๋‚  ๊ตญ๋ฌดํšŒ์˜๋ฅผ ํ†ต๊ณผํ•œ ๋ฒค์ฒ˜ํˆฌ์ž๋ฒ• ๊ฐœ์ •์•ˆ์€ ์˜ค๋Š” 21์ผ๋ถ€ํ„ฐ ๋ณธ๊ฒฉ ์‹œํ–‰๋  ์˜ˆ์ •์ด๋‹ค. ์‚ฌ์‹ค์ƒ ๋„์ž… ๋…ผ์˜๊ฐ€ ์‹œ์ž‘๋œ ์ง€ 3๋…„์ด ์ง€๋‚œ ์‹œ์ ์—์„œ์•ผ ์ฒซ ์‚ฝ์„ ๋œจ๊ฒŒ ๋œ ์…ˆ์ด๋‹ค. ์ •๋ถ€์ •์ฑ…์— ์‹œ์ฐจ๊ฐ€ ๋ฐœ์ƒํ•˜๋Š” ๊ฑด ์–ด์ฉ” ์ˆ˜ ์—†๋Š” ์ผ์ด๋‹ค. ์—ฌ๊ธฐ์„œ ์ •์ฑ…์„ ์‹œํ–‰ํ•ด์•ผ ํ•  ์›์ธ์ด ๋ฐœ์ƒํ•ด ๊ด€๋ จ ์ •์ฑ…์„ ์ˆ˜๋ฆฝํ•˜๋Š” ๋ฐ๊นŒ์ง€ ๊ฑธ๋ฆฌ๋Š” ์‹œ๊ฐ„์„ ๋‚ด๋ถ€์‹œ์ฐจ(inside lag), ์ˆ˜๋ฆฝ๋œ ์ •์ฑ…์ด ์‹ค์ œ๋กœ ์ง‘ํ–‰๋ผ ์ •์ฑ…ํšจ๊ณผ๊ฐ€ ๋‚˜ํƒ€๋‚˜๋Š” ๋ฐ ๊ฑธ๋ฆฌ๋Š” ์‹œ๊ฐ„์„ ์™ธ๋ถ€์‹œ์ฐจ(outside lag)๋ผ๊ณ  ํ•œ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ์ •๋ถ€ ์ •์ฑ…์€ ์ •์ฑ…์ด ์ˆ˜๋ฆฝ๋˜๊ธฐ๊นŒ์ง€์˜ ๋‚ด๋ถ€์‹œ์ฐจ๊ฐ€ ๊ธด ๋ฐ˜๋ฉด ์ •์ฑ…ํšจ๊ณผ๊ฐ€ ๋‚˜ํƒ€๋‚˜๋Š” ๋ฐ ๊ฑธ๋ฆฌ๋Š” ์™ธ๋ถ€์‹œ์ฐจ๋Š” ์งง๋‹ค. ์ ์ ˆํ•œ ์ž…๋ฒ• ์ ˆ์ฐจ๋ฅผ ๊ฑฐ์น˜๋Š” ๋ฐ ์‹œ๊ฐ„์ด ๊ฑธ๋ฆฌ๊ธด ํ•˜์ง€๋งŒ, ์ผ๋‹จ ์ •์ฑ…์ด ์ˆ˜๋ฆฝ๋˜๊ณ  ๋‚˜๋ฉด ์ง์ ‘์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๋ฐ ๊ทธ๋ฆฌ ๋งŽ์€ ์‹œ๊ฐ„์ด ๋“ค์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋‹ค๋งŒ ๋ฌธ์ œ๋Š” ๋ฒค์ฒ˜์ •์ฑ…์— ์žˆ์–ด์„  ์‹œ์˜์„ฑ์ด ๋ฌด์—‡๋ณด๋‹ค ์ค‘์š”ํ•˜๋‹จ ์ ์ด๋‹ค. ๋‹น์žฅ 1๋…„์ด๋ž€ ์‹œ๊ฐ„๋งŒ ์ง€์ฒด๋ผ๋„ ์„ฑ์žฅ ๊ฐ€๋Šฅ์„ฑ ์žˆ๋˜ ๊ธฐ์—…์ด ๋ฌด์ฐธํžˆ ์ง“๋ฐŸํžŒ๋‹ค.

2023.06.13-๊ตญ๋ฌดํšŒ์˜
6์›” 13์ผ ์„œ์šธ ์šฉ์‚ฐ ๋Œ€ํ†ต๋ น์‹ค์—์„œ ๊ตญ๋ฌดํšŒ์˜๊ฐ€ ์—ด๋ฆฌ๊ณ  ์žˆ๋‹ค/์‚ฌ์ง„=๋Œ€ํ†ต๋ น์‹ค

์—ฌ์ „ํ•œ '์ •๋ถ€ ์ค‘์‹ฌ' ์‹œ์žฅ, "ํ•œ๊ณ„ ๋šœ๋ ทํ•ด"

์šฐ๋ฆฌ๋‚˜๋ผ ๋ฒค์ฒ˜์‹œ์žฅ์˜ ๊ฒฝ์ง๋„๊ฐ€ ๋†’์•„์ง„ ๊ฑด ๊ตญ๋‚ด ๋ฒค์ฒ˜์‹œ์žฅ ์ž์ฒด๊ฐ€ ๋ฏผ๊ฐ„ ์ค‘์‹ฌ์ด ์•„๋‹Œ ๊ตญ๊ฐ€ ๋ฐ ์ •๋ถ€ ์ค‘์‹ฌ์œผ๋กœ ๋Œ์•„๊ฐ€๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋ฏผ๊ฐ„์— ํƒ„ํƒ„ํ•œ ์ž๋ณธ์ด ํ˜•์„ฑ๋ผ ์žˆ์ง€ ์•Š์œผ๋‹ˆ ์ •๋ถ€ ์ฐจ์›์—์„œ ์–ต์ง€๋กœ ํˆฌ์ž ์ฒด๊ณ„๋ฅผ ๊ฐ–์ถฐ๋‚˜๊ฐ€๊ณ  ์žˆ๋Š”๋ฐ, ์ƒํ™ฉ์ด ์ด๋Ÿฐ ๋งŒํผ ๋ฒค์ฒ˜์‹œ์žฅ์ด ํ•„์š”๋กœ ํ•˜๋Š” ์œ ์—ฐ์„ฑ์„ ๊ฐ–์ถ”๊ธฐ๊ฐ€ ๋งค์šฐ ์–ด๋ ค์šด ์ฒ˜์ง€์— ๋†“์—ฌ ์žˆ๋‹ค. ๋ฏผ๊ฐ„ ํˆฌ์ž๊ธฐ๊ด€์„ ๊ด€๋ฆฌํ•˜๋Š” ๋ถ€์ฒ˜์™€ ๊ด€๋ จ ๋ฒ•๋ฅ ์ด ์ƒ์ดํ•ด ๊ทœ์ œ ์ฐจ์ด๊ฐ€ ๋ฐœ์ƒํ•˜๊ณ  ์žˆ๋‹จ ์ ๋„ ๋ฏผ๊ฐ„ ํˆฌ์ž๋ฅผ ๊ฐ€๋กœ๋ง‰๋Š” ์š”์†Œ ์ค‘ ํ•˜๋‚˜๋‹ค.

์˜ˆ์ปจ๋Œ€ ๋ฒค์ฒ˜ํˆฌ์ž๋ฒ•์˜ ์ ์šฉ์„ ๋ฐ›๋Š” ์ค‘์†Œ๊ธฐ์—…์ฐฝ์—…ํˆฌ์žํšŒ์‚ฌ(์ฐฝํˆฌ์‚ฌ)๋Š” ์„ค๋ฆฝ ์ž๋ณธ๊ธˆ 20์–ต์›์ด ํ•„์š”ํ•˜์ง€๋งŒ ์—ฌ์‹ ์ „๋ฌธ๊ธˆ์œต์—…๋ฒ•์˜ ์ ์šฉ์„ ๋ฐ›๋Š” ์‹ ๊ธฐ์ˆ ์‚ฌ์—…๊ธˆ์œต์—…์ž(์‹ ๊ธฐ์‚ฌ)๋Š” 100์–ต์›์˜ ์„ค๋ฆฝ ์ž๋ณธ๊ธˆ์ด ํ•„์š”ํ•˜๋‹ค. ๋˜ ์ฐฝํˆฌ์‚ฌ๋Š” ์šด์šฉ ์ค‘์ธ ์ด์ž์‚ฐ์˜ 50% ์ด๋‚ด์—์„œ ๋Œ€ํ†ต๋ น๋ น์œผ๋กœ ์ •ํ•˜๋Š” ๋น„์œจ ์ด์ƒ์„ ๋ฒค์ฒ˜๊ธฐ์—… ๋“ฑ ๋ฒ•์—์„œ ์ •ํ•œ ๊ธฐ์—…์— ๋ฐ˜๋“œ์‹œ ํˆฌ์žํ•ด์•ผ ํ•˜๋Š” ๋“ฑ ํˆฌ์ž ๊ด€๋ จ ๊ทœ์ œ๋ฅผ ๋ฐ›๋Š” ๋ฐ˜๋ฉด, ์‹ ๊ธฐ์‚ฌ๋Š” ๊ทœ์•ฝ์ƒ ์‹ ๊ธฐ์ˆ  ์‚ฌ์—…์ž์— ํˆฌ์žํ•˜๋ฉด ๋˜๊ณ  ๋ฒ• ๋‹จ๊ณ„์—์„  ์ผ์ • ๊ทœ๋ชจ ์ด์ƒ์˜ ํˆฌ์ž ์˜๋ฌด๋ฅผ ๋ถ€์—ฌํ•˜์ง€ ์•Š๋Š” ๋“ฑ ํˆฌ์ž์— ์žˆ์–ด ์ƒ๋Œ€์ ์œผ๋กœ ์ž์œ ๋กญ๋‹ค. 

์ด์ฒ˜๋Ÿผ ๋ฒค์ฒ˜ํˆฌ์ž ๊ด€๋ จ ๋ฏผ๊ฐ„ ํˆฌ์ž๊ธฐ๊ด€์ด ๋‹ค์–‘ํ•œ ๋ถ€์ฒ˜์™€ ๋ฒ•๋ฅ ๋กœ ๊ฐ๊ฐ ๊ด€๋ฆฌ๋˜๋Š” ๊ฒฝ์šฐ๋Š” ์šฐ๋ฆฌ๋‚˜๋ผ๋ฅผ ์ œ์™ธํ•˜๊ณ  ์ „ ์„ธ๊ณ„์ ์œผ๋กœ ์œ ๋ก€๋ฅผ ์ฐพ๊ธฐ๊ฐ€ ์–ด๋ ต๋‹ค. ์ด ๋˜ํ•œ ๊ตญ๋‚ด ๋ฒค์ฒ˜์‹œ์žฅ์ด ์ •๋ถ€ ์ฃผ๋„ ์•„๋ž˜ ๋ฐœ์ „ํ–ˆ๋‹จ ์—ญ์‚ฌ๊ฐ€ ๋ฐœ๋ชฉ์„ ์žก์€ ๊ฒฐ๊ณผ๋‹ค. ์‹ค์ œ ๊ตญ๋‚ด ๋ฒค์ฒ˜์‹œ์žฅ์€ 1986๋…„ ์ค‘์†Œ๊ธฐ์—…์ฐฝ์—…์ง€์›๋ฒ•์ด ์ œ์ •๋œ ์ด๋ž˜ ์ •๋ถ€ ์ฃผ๋„์˜ ๋ถ€์ฒ˜๋ณ„ ์ •์ฑ…์  ์ง€์›์œผ๋กœ ๋ฐœ์ „ํ•ด ์™”๋‹ค. ์ด ๊ณผ์ •์—์„œ ํŒŒํŽธํ™”๋œ ํˆฌ์ž ๊ทœ์ œ์ฑ…์ด ๋งˆ๋ จ๋œ ๊ฑด, ์‹œ๋Œ€์ ์œผ๋กœ ์–ด์ฉ” ์ˆ˜ ์—†๋Š” ์ผ์ด์—ˆ์Œ์— ๋ถ„๋ช…ํ•˜๋‹ค. ๋‹ค๋งŒ ๋ฒค์ฒ˜ํˆฌ์ž ์‹œ์žฅ์ด ํ•œ ๋‹จ๊ณ„ ๋” ์„ฑ์žฅํ•˜๊ณ  ๋ฐœ์ „ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ฒฐ๊ตญ ๋ฏผ๊ฐ„ ์ฃผ๋„์˜ ์‹œ์žฅ์œผ๋กœ ๋ณ€ํ™”ํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ์‚ฐ์žฌ๋ผ ์žˆ๋Š” ๋ฒค์ฒ˜ํˆฌ์ž ๊ด€๋ จ ๋ฒ•์„ ์ •๋น„ํ•ด์•ผ ํ•œ๋‹จ ๋ชฉ์†Œ๋ฆฌ๊ฐ€ ๋†’์•„์ง€๋Š” ์ด์œ ๋‹ค. ๋ฏธ๊ตญ์ฒ˜๋Ÿผ ๋ชจํ—˜์ž๋ณธ์˜ ์ƒˆ๋กœ์šด ๋„์ „์ด ์žฅ๋ ค๋˜๋Š” ์‚ฌํšŒ๊ฐ€ ๊ตฌ์„ฑ๋ผ์•ผ๋งŒ ๋ฒค์ฒ˜์‹œ์žฅ ๋‚ด์—์„œ๋„ ๋ช‡ ๋…„๊ฐ€๋Ÿ‰์˜ ์ •์ฑ… ์‹œ์ฐจ๊ฐ€ ๋ถˆ๊ฐ€ํ”ผํ•œ ํ˜„ ์ƒํ™ฉ์„ ํƒ€๊ฐœํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค.

Picture

Member for

8 months 2 weeks
Real name
๋ฐ•์ฐฝ์ง„
Position
์—ฐ๊ตฌ์›
Bio
[email protected]
์ง€๊ทผ๊ฑฐ๋ฆฌ๋ฅผ ๋น„์ถ”๋Š” ๋“ฑ๋ถˆ์€ ์•ž์„ ํ–ฅํ•  ๋•Œ ๋น„๋กœ์†Œ ์ œ๋น›์„ ๋ฐœํ•˜๋Š” ๋ฒ•์ž…๋‹ˆ๋‹ค. ๊ณผ๊ฑฐ๋กœ ๋ง๋ฏธ์•”์•„ ๋‚˜์•„๊ฐ€์•ผ ํ•  ๋ฐฉํ–ฅ์„ฑ์„ ๋น„์ถœ ์ˆ˜ ์žˆ๋„๋ก ๋…ธ๋ ฅํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.

๊ด€๋ จ๊ธฐ์‚ฌ

Previous Next

[ํ•ด์™ธ DS] ์•„์‹œ์•„ AI ๊ฑฐ๋ฒ„๋„Œ์Šค, ๊ณผ๋„ํ•œ ๊ฒฝ์Ÿ๋ณด๋‹ค ํ˜‘๋ ฅํ•ด์•ผ ํ•  ๋•Œ

[ํ•ด์™ธ DS] ์•„์‹œ์•„ AI ๊ฑฐ๋ฒ„๋„Œ์Šค, ๊ณผ๋„ํ•œ ๊ฒฝ์Ÿ๋ณด๋‹ค ํ˜‘๋ ฅํ•ด์•ผ ํ•  ๋•Œ
Picture

Member for

8 months 2 weeks
Real name
์ด์‹œํ˜ธ
Position
์—ฐ๊ตฌ์›
Bio
[email protected]
์„ธ์ƒ์€ ๋‹ค๋ฉด์ ์ž…๋‹ˆ๋‹ค. ๋‚ด๊ณต์ด ์Œ“์ธ๋‹ค๋Š” ๊ฒƒ์€ ๋‹ค๋ฉด์„ฑ์„ ๋‘๋ฃจ ๋ณผ ์ˆ˜ ์žˆ๋‹ค๋Š” ๋œป์ด๋ผ๊ณ  ์ƒ๊ฐํ•˜๊ณ , ํ•˜๋ฃจํ•˜๋ฃจ ๋‚ด๊ณต์„ ์Œ“๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์Œ“์•„๋†“์€ ๋‚ด๊ณต์„ ์—ฌ๋Ÿฌ๋ถ„๊ณผ ๊ณต์œ ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.

์ˆ˜์ •

๊ถŒ๋ ฅ ์ง‘์ค‘, ํ˜„์ง€ํ™”, ๋ฐฐ์ œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ตญ๊ฐ€๊ฐ„ ํ˜‘๋ ฅ์ด ํ•„์š”ํ•ด
๊ธฐ์กด์— ์žˆ๋Š” ์•„์‹œ์•„ ์—ฐํ•ฉ ๋ชจ์ž„์„ ํ™œ์šฉํ•ด ์กฐ์œจ ๋…ผ์˜๋ฅผ ์ถ”์ง„ํ•  ์ˆ˜ ์žˆ์–ด
์กฐ์œจ๋œ AI ๊ฑฐ๋ฒ„๋„Œ์Šค๋Š” ๊ธฐ์ˆ  ํ™˜๊ฒฝ์˜ ๋ณ€ํ™”์— ๋งž์ถฐ ๋ฐœ ๋น ๋ฅด๊ฒŒ ์›€์ง์—ฌ์•ผ

[ํ•ด์™ธDS]๋Š” ํ•ด์™ธ ์œ ์ˆ˜์˜ ๋ฐ์ดํ„ฐ ์‚ฌ์ด์–ธ์Šค ์ „๋ฌธ์ง€๋“ค์—์„œ ์ „ํ•˜๋Š” ์—…๊ณ„ ์ „๋ฌธ๊ฐ€๋“ค์˜ ์˜๊ฒฌ์„ ๋‹ด์•˜์Šต๋‹ˆ๋‹ค. ์ €ํฌ ๋ฐ์ดํ„ฐ ์‚ฌ์ด์–ธ์Šค ๊ฒฝ์˜ ์—ฐ๊ตฌ์†Œ (GIAI R&D Korea)์—์„œ ์˜์–ด ์›๋ฌธ ๊ณต๊ฐœ ์กฐ๊ฑด์œผ๋กœ ์ฝ˜ํ…์ธ  ์ œํœด๊ฐ€ ์ง„ํ–‰ ์ค‘์ž…๋‹ˆ๋‹ค.


everyone_wins_with_better_ai_governance
์‚ฌ์ง„=East Asia Forum

์ƒ์„ฑํ˜• ์ธ๊ณต์ง€๋Šฅ์ด ์ „ ์„ธ๊ณ„์˜ ์—ด๋ ฌํ•œ ํ˜ธ์‘์„ ์–ป๊ณ  ์žˆ์ง€๋งŒ, ์ •์ฑ… ์ž…์•ˆ์ž๋“ค์€ AI ์‹œ์Šคํ…œ์ด ๊ตญ๊ฒฝ์„ ๋„˜์–ด ์‹œ๋ฏผ๋“ค์—๊ฒŒ ๋ฏธ์น  ์˜ํ–ฅ์— ๋Œ€ํ•ด ์šฐ๋ ค์˜ ๋ชฉ์†Œ๋ฆฌ๋ฅผ ๋‚ด๊ณ  ์žˆ๋‹ค.

์•„์‹œ์•„ AI ๊ฑฐ๋ฒ„๋„Œ์Šค์˜ ๋„์ „๊ณผ์ œ, ํ˜„์ง€ํ™” vs. ์ง€์—ญ ํ˜‘๋ ฅ

์„ธ๊ณ„์€ํ–‰์€ ๋ฏธ๊ตญ์˜ ๋ณดํ˜ธ๋ฌด์—ญ์ฃผ์˜์™€ ๋ถ€์ฑ„ ์ฆ๊ฐ€์˜ ์˜ํ–ฅ์œผ๋กœ ๋‚ด๋…„ ๋™์•„์‹œ์•„ ๊ฐœ๋ฐœ๋„์ƒ๊ตญ ๊ฒฝ์ œ๊ฐ€ ๋ฐ˜์„ธ๊ธฐ ๋งŒ์— ๊ฐ€์žฅ ๋‚ฎ์€ ์„ฑ์žฅ๋ฅ ์„ ๊ธฐ๋กํ•  ๊ฒƒ์ด๋ผ๊ณ  ๊ฒฝ๊ณ ํ–ˆ๋‹ค๊ณ  ํŒŒ์ด๋‚ธ์…œํƒ€์ž„์Šค๊ฐ€ 10์›” 1์ผ(ํ˜„์ง€์‹œ๊ฐ„) ๋ณด๋„ํ–ˆ๋‹ค. ์ตœ์•…์˜ ๊ฒฝ์ œ ์ „๋ง์— ์ง๋ฉดํ•œ ์•„์‹œ์•„์—์„œ ํฌ์šฉ์ ์ด๊ณ  ์ง€์† ๊ฐ€๋Šฅํ•œ ์„ฑ์žฅ์„ ์ด๋Œ์–ด๋‚ผ ์—ด์‡ ๋Š” ์ฒจ๋‹จ AI ์‹œ์Šคํ…œ ๊ฐœ๋ฐœ์„ ํฌํ•จํ•ด ๋””์ง€ํ„ธ ํ˜๋ช…์„ ํ™œ์šฉํ•˜๊ธฐ ์œ„ํ•œ ์„œ๋น„์Šค ๋ถ€๋ฌธ์˜ ๊ฐœํ˜์ผ ๊ฒƒ์ด๋‹ค. ๋”ฐ๋ผ์„œ AI ๊ฑฐ๋ฒ„๋„Œ์Šค์˜ ์ง€์—ญ์  ์กฐ์œจ์€ ์•„์‹œ์•„์—์„œ ๊ทธ ์–ด๋А ๋•Œ๋ณด๋‹ค ์ค‘์š”ํ•œ ํ™”๋‘๋‹ค. ๋˜ํ•œ, AI๋ฅผ ์œ„ํ•œ ์—ญ๋‚ด ์กฐ์œจ๋œ ํ˜‘์ •์„ ํ†ตํ•ด ๋ฏธ๊ตญ๊ณผ ์ค‘๊ตญ ๊ฐ„์˜ ์ง€์ •ํ•™์  ๊ฒฝ์Ÿ์ด๋ผ๋Š” ๊ฐ€์žฅ ์‹ฌ๊ฐํ•œ ์™ธ๊ต ๋ฆฌ์Šคํฌ๋ฅผ ์™„ํ™”ํ•˜๋Š” ๋™์‹œ์— ์ค‘๊ฒฌ๊ตญ๋“ค์ด ์–ด๋А ํ•œ์ชฝ์„ ์„ ํƒํ•ด์•ผ ํ•˜๋Š” ๊ฐ•์ œ์„ฑ์„ ์ค„์ด๋Š” ๋ฐ ๋„์›€์ด ๋  ์ˆ˜ ์žˆ๋‹ค.

ํ•˜์ง€๋งŒ ํšจ๊ณผ์ ์ธ AI ๊ฑฐ๋ฒ„๋„Œ์Šค๋Š” ๊ทผ๋ณธ์ ์ธ ๋„์ „์— ์ง๋ฉดํ•ด ์žˆ๋‹ค. ๋ฏธ๊ตญ๊ณผ ์ค‘๊ตญ, ๊ทธ๋ฆฌ๊ณ  ์†Œ์ˆ˜์˜ ๊ธฐ์ˆ  ์ธํ”„๋ผ ๊ธฐ์—…์ด AI์— ๋Œ€ํ•œ ๊ถŒ๋ ฅ์„ ์ง‘์ค‘์‹œํ‚ค๊ณ  ์žˆ๋Š” ๊ฒƒ์ด ๊ทธ์ค‘ ํ•˜๋‚˜๋‹ค. ๋˜ ๋‹ค๋ฅธ ๋ฌธ์ œ๋Š” ๊ฐ๊ตญ ์ •๋ถ€๊ฐ€ ์ฃผ์š” ๋””์ง€ํ„ธ ์ž์‚ฐ์„ ํ˜„์ง€ํ™”ํ•˜๊ณ  ๋ณดํ˜ธํ•˜๋ ค๋Š” ๊ฒฝํ–ฅ์ด ๊ฐ•ํ•˜๋‹ค๋Š” ์ ์ด๋‹ค. ๋Œ€๊ทœ๋ชจ์–ธ์–ด๋ชจ๋ธ(LLM)์˜ ์ธ์ƒ์ ์ธ ์ดˆ๊ธฐ ์„ฑ๋Šฅ์„ ๋ฏธ๋ฃจ์–ด๋ณด์•„ AI ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์€ LLM ๊ธฐ๋ฐ˜์— ์˜์กดํ•  ๊ฐ€๋Šฅ์„ฑ์ด ์ ์  ๋” ๋†’์•„์ง„๋‹ค. ์• ์„ํ•˜๊ฒŒ๋„ LLM์€ ์ตœ๊ณ ์˜ ์ž์›์„ ๋ณด์œ ํ•œ ๊ธฐ์—…๋งŒ์ด ์œ ์ง€ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐ์ดํ„ฐ ๋ฐ ์—ฐ์‚ฐ ์ง‘์•ฝ์ ์ธ ๊ธฐ์ˆ ์ด๋‹ค. ์ด๋Œ€๋กœ๋ผ๋ฉด '์Šน์ž ๋…์‹' ํ™˜๊ฒฝ์ด ์กฐ์„ฑ๋˜๊ณ , AI ๋ฆฌ๋”๋“ค์€ ๊ทธ๋“ค์ด ์ถ•์ ํ•˜๋Š” ํ•™์Šต๊ณผ ์ž๋ณธ์œผ๋กœ๋ถ€ํ„ฐ ๋ถˆ๊ท ํ˜•์ ์ธ ํ˜œํƒ์„ ๋ˆ„๋ฆฌ๋ฉฐ ๊ถŒ๋ ฅ์„ ๋”์šฑ ๊ฐ•ํ™”์‹œํ‚ฌ ๊ฒƒ์ด๋‹ค. ์ด๋Š” ๊ฒฐ๊ณผ์ ์œผ๋กœ ์‹ ๊ทœ ์ง„์ž…์ž์˜ ๊ฒฝ์Ÿ์„ ์–ด๋ ต๊ฒŒ ํ•˜๊ณ , ๊ณต๊ณต ๊ธฐ๊ด€์ด AI ์‹œ์Šคํ…œ์˜ ํˆฌ๋ช…์„ฑ๊ณผ ์ฑ…์ž„์„ฑ์„ ๋ณด์žฅํ•˜๊ธฐ ์–ด๋ ต๊ฒŒ ๋งŒ๋“ ๋‹ค.

ํ•œํŽธ ์ธ๊ณต์ง€๋Šฅ์— ๋Œ€ํ•œ ๊ถŒ๋ ฅ์ด ์ง‘์ค‘๋˜๋ฉด์„œ ์•„์‹œ์•„ ํƒœํ‰์–‘ ์ง€์—ญ์˜ ์ผ๋ถ€ ์ •๋ถ€๋Š” ๊ตญ๊ฐ€ ์ •์ฑ…์„ ํ†ตํ•ด ๋””์ง€ํ„ธ ์ž์‚ฐ์„ ๋ณดํ˜ธํ•˜๊ณ  ํ˜„์ง€ํ™”ํ•˜๋ ค๊ณ  ๋…ธ๋ ฅํ•˜๊ณ  ์žˆ๋‹ค. ๊ฒฐ๋ก ๋ถ€ํ„ฐ ๋งํ•˜์ž๋ฉด ํ˜„์ง€ํ™” ์กฐ์น˜๋Š” AI ์‹œ์Šคํ…œ์— ๋ถ€์ •์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค. ํ˜„์ง€ํ™”๋Š” ํ•™์Šต ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์ ‘๊ทผ์„ฑ์„ ๋–จ์–ด๋œจ๋ฆฌ๊ณ , ํ˜์‹  ์ƒํƒœ๊ณ„๋ฅผ ๊ณ ๊ฐˆ์‹œํ‚ค๋ฉฐ, ์‚ฌ์ด๋ฒ„ ๋ณด์•ˆ ๋ฉ”์ปค๋‹ˆ์ฆ˜์˜ ํŒŒํŽธํ™”๋ฅผ ์ดˆ๋ž˜ํ•  ์œ„ํ—˜์ด ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์—ญ๋‚ดํฌ๊ด„์ ๊ฒฝ์ œ๋™๋ฐ˜์žํ˜‘์ •(RCEP) ๋ฌด์—ญ ํ˜‘์ •์€ ๊ตญ๊ฐ€ ์•ˆ๋ณด๋ฅผ ์ด์œ ๋กœ ๋ฐ์ดํ„ฐ ํ˜„์ง€ํ™”๋ฅผ ํ—ˆ์šฉํ•˜๋Š” ์ „์ž์ƒ๊ฑฐ๋ž˜ ์ •์ฑ…์„ ํ†ตํ•ด ์ด๋Ÿฌํ•œ ์ถ”์„ธ๋ฅผ ๋ฐ˜์˜ํ•˜๊ณ  ์žˆ๋‹ค. ๊ฒŒ๋‹ค๊ฐ€ ๋ฏธ๊ตญ์€ ๋”์šฑ ์ ๊ทน์ ์ธ ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ทจํ•˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋ž˜ํ”ฝ ์ฒ˜๋ฆฌ ์žฅ์น˜(GPU)์˜ ์ž๊ตญ ๋‚ด ์ƒ์‚ฐ, AI ํ˜์‹  ์ƒํƒœ๊ณ„์— ๋Œ€ํ•œ ํˆฌ์ž, ์ค‘๊ตญ์œผ๋กœ ํŒ๋งค๋˜๋Š” ํ•˜์ด์—”๋“œ GPU๋ฅผ ๊ฒจ๋ƒฅํ•œ ์ˆ˜์ถœ ๊ทœ์ œ๋Š” ํ˜„์ง€ํ™”๋ฅผ ํ†ตํ•ด ๋ฏธ๊ตญ ๊ธฐ์ˆ  ๊ธฐ์—…์˜ AI ์šฐ์œ„๋ฅผ ๊ณต๊ณ ํžˆ ๋‹ค์ ธ๋‚˜๊ฐˆ ์˜๋„๋กœ ํ•ด์„๋œ๋‹ค.

ํ˜„์ง€ํ™”์— ๋Œ€์‘ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ•๋ ฅํ•œ ์ง€์—ญ์  ๋„คํŠธ์›Œํฌ๊ฐ€ ์—†๋‹ค๋ฉด ์ค‘๊ตญ, ์ธ๋„, ์ธ๋„๋„ค์‹œ์•„ ๋“ฑ ์ž ์žฌ์  AI ๊ฒฝ์Ÿ๊ตญ๋“ค๋„ ์ด์— ๋Œ€์‘ํ•˜์ง€ ์•Š์„ ์ˆ˜ ์—†๋Š” ๋…ธ๋ฆ‡์ด๋‹ค. ์„ค์ƒ๊ฐ€์ƒ์œผ๋กœ ๋ฐ์ดํ„ฐ, ์ปดํ“จํŒ… ์„ฑ๋Šฅ, ์ธ์žฌ ํ™•๋ณด์— ๋Œ€ํ•œ ์ ‘๊ทผ์„ฑ์ด ๊ฐ€์žฅ ๋‚ฎ์€ ๊ฐ€๋‚œํ•œ ์†Œ๊ทœ๋ชจ ๊ตญ๊ฐ€๋“ค์€ AI ์‚ฐ์—…์— ์ฐธ์—ฌํ•  ์ˆ˜ ์žˆ๋Š” ์„ ํƒ์ง€๊ฐ€ ์ค„์–ด๋“ค๊ฒŒ ๋  ๊ฒƒ์ด ๋ถˆ ๋ณด๋“ฏ ๋ป”ํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ์•„์‹œ์•„์˜ ๋””์ง€ํ„ธ ๊ฒฉ์ฐจ๋Š” ๊ณง '์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ฒฉ์ฐจ'๋กœ ์ด์–ด์งˆ ๊ฐ€๋Šฅ์„ฑ์ด ๋งค์šฐ ๋†’๋‹ค. ๊ด‘๋Œ€์—ญ ์—ฐ๊ฒฐ์„ฑ์ด ํ–ฅ์ƒ๋˜์—ˆ์ง€๋งŒ, ์•„์„ธ์•ˆ ์ธ๊ตฌ์˜ ์•ฝ 61%๋Š” ์ธํ„ฐ๋„ท ์ ‘์†์ด ๊ฐ€๋Šฅํ•œ ๋ฒ”์œ„ ๋‚ด์— ๊ฑฐ์ฃผํ•˜์ง€๋งŒ, ์•„์ง๋„ ์ธํ„ฐ๋„ท์„ ์‚ฌ์šฉํ•˜์ง€ ์•Š๋Š” ๊ฒƒ์œผ๋กœ ์ถ”์ •๋œ๋‹ค. ๋ช‡๋ช‡ ๊ตญ๊ฐ€๋Š” ์ ์ ˆํ•œ ๋ฐ์ดํ„ฐ ๋ณดํ˜ธ๋ฒ•๊ณผ AI ์ „๋žต๋„ ๋ถ€์กฑํ•œ ์‹ค์ •์ด๋‹ค. ๋”๊ตฐ๋‹ค๋‚˜ ์•„์‹œ์•„์˜ ์—ฌ์„ฑ, ๋†์ดŒ ๊ฑฐ์ฃผ์ž, ์›์ฃผ๋ฏผ์€ ์—ฌ์ „ํžˆ AI ์‹œ์Šคํ…œ์˜ ํ˜œํƒ์„ ๋ˆ„๋ฆฌ๋Š” ๋ฐ ์žˆ์–ด ์ฒด๊ณ„์ ์œผ๋กœ ๋ฐฐ์ œ๋˜์–ด ์žˆ๋‹ค.

๊ถŒ๋ ฅ ์ง‘์ค‘ยทํ˜„์ง€ํ™”ยท๋ฐฐ์ œ, '3๋Œ€ ๊ณผ์ œ' ํ•ด๊ฒฐ์„ ์œ„ํ•œ ํ˜‘๋ ฅ ๋ฐฉ์•ˆ

์ •๋ถ€, ๊ธˆ์œต, ์ค‘์†Œ๊ธฐ์—…, ์‹œ๋ฏผ๋“ค์€ AI ์‹œ์Šคํ…œ์˜ ๊ถŒ๋ ฅ์˜ ์ง‘์ค‘, ํ˜„์ง€ํ™”, ๋ฐฐ์ œ์˜ ๊ท ํ˜•์„ ๋งž์ถ”๊ธฐ ์œ„ํ•ด ํ˜‘๋ ฅ ๋ฐฉ์•ˆ์„ ๋ชจ์ƒ‰ํ•ด์•ผ ํ•œ๋‹ค. ๊ถŒ๋ ฅ์ด ์ง‘์ค‘๋˜๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ํ˜•ํ‰์„ฑ์„ ๋†’์ด๋Š” ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ ์†Œ์œ ๊ถŒ ๋ฐ ๊ฐ€์น˜ ํ‰๊ฐ€ ํŒจ๋Ÿฌ๋‹ค์ž„์„ ์ด‰์ง„ํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. ์ž๋ณธ ๊ณต๊ธ‰์ž๋Š” ๋Œ€๊ทœ๋ชจ ๋…์  AI ๋ชจ๋ธ๊ณผ ์ค‘์•™์ง‘์ค‘์‹ ํด๋ผ์šฐ๋“œ ์ปดํ“จํŒ… ์ธํ”„๋ผ์— ๋Œ€ํ•œ ์˜์กด๋„๋ฅผ ์ค„์ด๋ฉด์„œ ์ค‘์†Œ๊ธฐ์—…๊ณผ ์ปค๋ฎค๋‹ˆํ‹ฐ๊ฐ€ ์ฃผ๋„ํ•˜๋Š” AI ์‹œ์Šคํ…œ ๊ฐœ๋ฐœ์„ ์ง€์›ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ์ œ์‚ผ์ž AI ๊ฐ๋…์— ๋Œ€ํ•œ ์ง€์—ญ์  ์กฐ์ •์„ ํ†ตํ•ด ๊ตญ๊ฐ€ ์ฐจ์›์˜ ๋ง‰๋Œ€ํ•œ ๊ทœ์ œ ๋น„์šฉ์„ ๋‚ฎ์ถœ ์ˆ˜๋„ ์žˆ๋‹ค. ์‹ฑ๊ฐ€ํฌ๋ฅด์˜ AI ๊ฒ€์ฆ ์žฌ๋‹จ(Singapore AI Verify Foundation)์€ AI ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ๊ด‘๋ฒ”์œ„ํ•œ ์ดํ•ด๊ด€๊ณ„์ž์˜ ์ฐธ์—ฌ๋ฅผ ํ™•๋Œ€ํ•˜๋Š” ๊ณ ๋ฌด์ ์ธ ๋ฏผ๊ด€ ํŒŒํŠธ๋„ˆ์‹ญ์„ ์„ฑ์‚ฌํ–ˆ๋‹ค. ๊ธ€๋กœ๋ฒŒ ๊ทœ์ œ ์ƒŒ๋“œ๋ฐ•์Šค(์œ ์˜ˆ์ œ๋„) ์ด๋‹ˆ์…”ํ‹ฐ๋ธŒ๊ฐ€ ์•„์‹œ์•„์—์„œ ์‹œ์ž‘๋  ์ˆ˜๋„ ์žˆ์Œ์„ ์‹œ์‚ฌํ•˜๋Š” ๋Œ€๋ชฉ์ด๋‹ค.

๊ตญ๊ฒฝ์„ ๋„˜๋‚˜๋“œ๋Š” ๋ฐ์ดํ„ฐ ํ๋ฆ„์— ๋Œ€ํ•œ ๊ธฐ์กด์˜ ์–‘์ž ๋ฐ ๋‹ค์ž๊ฐ„ ๋ฌด์—ญ ํ˜‘์ •์„ ์—…๋ฐ์ดํŠธํ•˜๋Š” ๊ฒƒ๋ถ€ํ„ฐ ์‹œ์ž‘ํ•ด, ํ˜„์ง€ํ™”์˜ ๊ท ํ˜•์„ ๋งž์ถฐ ๋‚˜๊ฐˆ ์ˆ˜ ์žˆ๋‹ค. ๋‹ค์ž๊ฐ„ ๋ฌด์—ญ ๊ทœ์น™์—์„œ ๊ตญ๊ฐ€ ์•ˆ๋ณด ๋ฉด์ œ๋ฅผ ๊ฒ€ํ† ํ•ด ๋ณด๋ฉด ์ž์œ ํ™”ํ•  ์ˆ˜ ์žˆ๋Š” AI ๊ด€๋ จ ์ž์‚ฐ์„ ๊ตฌ๋ถ„ํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋œ๋‹ค. ๊ธฐ์กด์˜ ์†Œํ†ต ๋ฌด๋Œ€๋ฅผ ํ™œ์šฉํ•˜๋Š” ๊ฒƒ๋„ ์ข‹์€ ๋ฐฉ๋ฒ•์ด๋‹ค. ์„ธ๊ณ„๋ฌด์—ญ๊ธฐ๊ตฌ์˜ ์ „์ž์ƒ๊ฑฐ๋ž˜์— ๊ด€ํ•œ ๊ณต๋™ ์ด๋‹ˆ์…”ํ‹ฐ๋ธŒ๋Š” ์•„์‹œ์•„ ํƒœํ‰์–‘ ๊ตญ๊ฐ€๋“ค์ด ๊ณต๋™ AI ๊ฑฐ๋ฒ„๋„Œ์Šค ํ˜‘๋ ฅ์„ ์œ„ํ•ด ์ถ”์ง„๋ ฅ์„ ์–ป์„ ์ˆ˜ ์žˆ๋Š” ํฌ๋Ÿผ ์ค‘ ํ•˜๋‚˜๋‹ค. ์•„์šธ๋Ÿฌ ์ƒํ˜ธ์˜์กด์  ํ‘œ์ค€๊ธฐ๊ตฌ๋ฅผ ์„ธ์šฐ๋ฉด ๊ตญ๊ฒฝ์„ ๋„˜๋‚˜๋“œ๋Š” ๋ฐ์ดํ„ฐ ํ๋ฆ„์˜ ์ž์œ ํ™”๊ฐ€ ์ฑ…์ž„์„ฑ์„ ํ›ผ์†ํ•˜์ง€ ์•Š๋„๋ก ์ค‘์žฌ ๋ฐ ๋ณด์žฅํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค. ๋น„ํ˜„์‹ค์ ์ธ ํ˜‘๋ ฅ ์ œ๋„๊ฐ€ ์•„๋‹ˆ๋ผ, ๊ฒฝ์ œ ๋‘”ํ™” ์ „๋ง์˜ ๋ŒํŒŒ๊ตฌ๋ฅผ ์ฐพ๊ธฐ ์œ„ํ•œ ์ „๋žต์  ํ˜‘๋ ฅ์ด๋ผ๋Š” ์ ์„ ๊ฐ•์กฐํ•˜๋Š” ๋ฐ”๋‹ค.

๋ฐฐ์ œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ •์ฑ… ๋ฆฌ๋”๋“ค์€ ์•„์„ธ์•ˆ ๋ฐ ํƒœํ‰์–‘ ๋„์„œ๊ตญ๋“ค๊ณผ ํ˜‘๋ ฅํ•˜์—ฌ ๊ทœ์ œ ๋ฐ AI ์ „๋žต์„ ๊ฐ•ํ™”ํ•ด์•ผ ํ•œ๋‹ค. ์ค‘์†Œ๊ธฐ์—… ์ž๊ธˆ ์กฐ๋‹ฌ๊ณผ ๋””์ง€ํ„ธ ์—ญ๋Ÿ‰ ๊ฐ•ํ™”๋Š” ์ง€์—ญ AI ์ƒํƒœ๊ณ„์— ๊ณตํ‰ํ•˜๊ฒŒ ์ฐธ์—ฌํ•  ์ˆ˜ ์žˆ๋„๋ก ์ง€์›ํ•˜๋Š” ๋ฐ ํ•ต์‹ฌ์ ์ธ ์ด๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•  ๊ฒƒ์ด๋‹ค. ๋˜ํ•œ ์ž์›๋ด‰์‚ฌ์ž์™€ ๊ฐœ๋ฐœ ์‹ค๋ฌด์ž๋“ค์€ AI ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ์‹œ๋ฏผ ์ฐธ์—ฌ๋ฅผ ๋†’์ด๊ณ  ๋””์ง€ํ„ธ ๊ฑฐ๋ฒ„๋„Œ์Šค์— ๋Œ€ํ•œ ์ฐธ์—ฌ ์ธ์‹์„ ๋†’์ด๊ธฐ ์œ„ํ•œ ์ง€์—ญ ์ฃผ๋„ ์บ ํŽ˜์ธ์„ ์ง€์›ํ•  ์ˆ˜ ์žˆ๋‹ค.

AI ์‹œ์Šคํ…œ์˜ ์ง‘์ค‘, ํ˜„์ง€ํ™”, ๋ฐฐ์ œ์˜ ๋ฌธ์ œ์— ๋Œ€ํ•œ ์‰ฌ์šด ํ•ด๋‹ต์€ ์—†๋‹ค. ํ•˜์ง€๋งŒ ์กฐ์œจ๋œ AI ๊ฑฐ๋ฒ„๋„Œ์Šค๋Š” ๋‹ค์–‘ํ•œ ์ง€์—ญ ์ดํ•ด๊ด€๊ณ„์ž๋“ค์ด AI ์‹œ์Šคํ…œ์„ ์ ๊ทน์ ์œผ๋กœ ๊ด€๋ฆฌํ•˜๋„๋ก ๋™๊ธฐ๋ฅผ ๋ถ€์—ฌํ•˜๋Š” ๋™์‹œ์—, ๋ฆฌ์Šคํฌ์— ๋Œ€ํ•œ ๊ฐ€์‹œ์„ฑ์„ ํ™•๋ณดํ•˜๋Š” ๋ฐ ๋„์›€์„ ์ค€๋‹ค. ํšจ๊ณผ์ ์ธ ํ˜‘๋ ฅ์„ ์œ„ํ•ด AI ๊ฑฐ๋ฒ„๋„Œ์Šค๋Š” ๊ธฐ์ˆ  ํ™˜๊ฒฝ์ด ์ง„ํ™”ํ•˜๋Š” ์†๋„๋งŒํผ ๋ฐœ ๋น ๋ฅด๊ฒŒ ์›€์ง์—ฌ์•ผ ํ•œ๋‹ค. ์œ„๊ธฐ๋ฅผ ๋Œ€๋น„ํ•˜์ง€ ์•Š์€ ๊ตญ๊ฐ€๋“ค์˜ ๊ฒฝ์ œ ์„ฑ์ ํ‘œ๊ฐ€ ๋‚˜์™”์„ ๋• ์ ๊ธฐ๋ฅผ ๋†“์ณค์„ ํ™•๋ฅ ์ด ๋†’๋‹ค. ๊ธฐ์ˆ  ํ˜์‹ ์ด๋ผ๋Š” ๊ณตํ†ต๋œ ๋ชฉํ‘œ ์•„๋ž˜ ๊ฐ์ž์˜ ๋””์ง€ํ„ธ ๋น„๊ต์šฐ์œ„๋กœ ์ ๊ทน์ ์œผ๋กœ ํ˜‘๋ ฅํ•ด์•ผ ํ•  ์‹œ๊ธฐ๋‹ค.


Everyone wins with better Asian AI governance

Generative artificial intelligence (AI) has captured the worldโ€™s imagination. It has also been greeted with alarm, with policymakers concerned about its control by non-state actors and the impact of AI systems on citizens within and across national borders.

Most AI experts agree that the world needs to work together to promote the best and prevent the worst. But China announcing its Global AI Governance Initiative two weeks before a UK-hosted AI Safety Summit and one day after the United States further tightened export controls over advanced computing chips raises questions about the effectiveness of multilateral efforts to develop trustworthy, inclusive and environmentally sustainable AI systems.

Regional coordination of AI governance is nowhere more crucial than in Asia.

With Asia facing one of its worst economic outlooks in half a century, the key to inclusive and sustainable growth in the region will be reforming the service sector to harness the digital revolution, including through the development of advanced AI systems. Coordinated regional arrangements for AI can also help mitigate the most acute risks of geostrategic competition between the United States and China while reducing the need for middle powers to choose sides.

Effective AI governance faces fundamental challenges. The concentration of power over AI inputs by the United States, China and a handful of their technology infrastructure firms is just one. Another problem is governmentsโ€™ tendency to localise and protect key digital assets. Meanwhile, Asiaโ€™s women, rural residents, and indigenous populations remain systematically excluded from accessing the benefits of AI systems.

There are huge differences in state perspectives and capabilities for dealing with AI-related challenges, yet the region already possesses the raw ingredients required to shape a regional framework for AI governance. These include a wide variety of flexible digital policy tools and industry engagement strategies that can be upgraded and flexibly deployed.

A foundational challenge for AI governance in Asia is that a handful of US and Chinese technology infrastructure companies enjoy near-monopoly power over most key inputs. The impressive early performance of large language models (LLMs) shows they could become the foundational infrastructure on which AI applications rely. But LLMs depend on data and computation-intensive machine learning that only the best-resourced companies can maintain.

This signals a worrying โ€˜winner takes mostโ€™ environment. AI leaders benefit disproportionately from the learning and capital they accrue, further concentrating power. This concentration makes it difficult for new entrants to compete and public actors to ensure transparency and accountability of AI systems.

With power over AI inputs concentrated, some governments across the Asia Pacific are seeking to protect and localise their digital assets through national policy. Localisation measures have negative impacts on AI systems. Localisation reduces access to training data, starves innovation ecosystems and risks fragmentation of cybersecurity mechanisms.

The Regional Comprehensive Economic Partnership (RCEP) trade agreement mirrors this trend, with its chapter on e-commerce allowing data localisation carveouts on national security grounds. The United States has taken an even more active approach. Investments in onshore production of graphics processing units (GPUs), AI innovation ecosystems and export controls targeting high-end GPUs sold to China signal its intention to extend US technology companiesโ€™ AI advantages through localisation.

Absent a robust regional framework to counteract localisation, it will be difficult for potential AI competitors such as China, India and Indonesia not to respond in kind. Smaller and poorer countries with the least access to data, computational capacity and talent will be left with fewer options to participate in the AI industry.

Southeast Asiaโ€™s comparatively weak AI readiness risks the regionโ€™s digital divides becoming โ€˜algorithmic dividesโ€™. While broadband connectivity has increased, an estimated 61 per cent of ASEAN populations do not use the internet despite living within range of internet access. Several countries lack adequate data protection laws and AI strategies.

Governments, capital providers, small- and medium-enterprises (SMEs) and citizens can coordinate strategies that counterbalance concentration, localisation, and exclusion in AI systems.

Key to addressing concentration will be promoting new paradigms of data ownership and valuation that increase equity, including experimentation with data cooperatives and data unions. Capital providers can support the development of SME- and community-driven AI systems while reducing reliance on largescale proprietary AI models and centralised cloud computing infrastructure.

Regional coordination of third-party AI oversight can lower the prohibitive costs of regulation at the national level. Existing national policy tools offer starting points for a regional approach that places responsibility on technology firms. Singaporeโ€™s AI Verify Foundation is an encouraging publicโ€“private partnership that increases broad stakeholder participation in AI systems. A proposed global regulatory sandbox initiative could even begin in Asia.

Counterbalancing localisation can begin with updating existing bilateral, minilateral and multilateral trade agreements for cross-border data flows. Examining national security exemptions in multilateral trade rules can help distinguish which AI-relevant assets could be liberalised. The World Trade Organizationโ€™s joint initiative on e-commerce is a forum in which Asia Pacific nations can push to gain momentum. A regional interdependent standards body could ensure liberalisation of cross-border data flows does not compromise accountability.

To address exclusion, regulatory leaders can work with ASEAN and Pacific Island nations to strengthen regulations and AI strategies. SME financing and digital capacity building will be key to supporting equitable participation in regional AI ecosystems. Donors and development practitioners can also support locally led efforts to increase citizen participation and representation in AI systems and engagement with digital governance.

There are no easy answers to questions of concentration, localisation and exclusion in AI systems. But coordinated AI governance can create incentives for diverse regional stakeholders to actively steward AI systems while increasing transparency around risks.

In practice, AI governance will need to move as fast as the technology landscape is evolving.

Picture

Member for

8 months 2 weeks
Real name
์ด์‹œํ˜ธ
Position
์—ฐ๊ตฌ์›
Bio
[email protected]
์„ธ์ƒ์€ ๋‹ค๋ฉด์ ์ž…๋‹ˆ๋‹ค. ๋‚ด๊ณต์ด ์Œ“์ธ๋‹ค๋Š” ๊ฒƒ์€ ๋‹ค๋ฉด์„ฑ์„ ๋‘๋ฃจ ๋ณผ ์ˆ˜ ์žˆ๋‹ค๋Š” ๋œป์ด๋ผ๊ณ  ์ƒ๊ฐํ•˜๊ณ , ํ•˜๋ฃจํ•˜๋ฃจ ๋‚ด๊ณต์„ ์Œ“๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์Œ“์•„๋†“์€ ๋‚ด๊ณต์„ ์—ฌ๋Ÿฌ๋ถ„๊ณผ ๊ณต์œ ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.

๊ด€๋ จ๊ธฐ์‚ฌ

Previous Next